Для чего нужен дроссель в машине

Что такое гидрозамок и для чего нужен

Для чего нужен дроссель в машине
10 октября 2018

Гидрозамок находится между гидроцилиндром и гидроспределителем. Его назначение в том, чтобы свободно пропускать жидкость в обоих направлениях при наличии управляющего действия и только в одном направлении при его отсутствии.

Это обеспечивает надежную фиксацию таких рабочих органов машин, как нож автогрейдера, ковш скрепера, стрела крана.

Можно быть уверенным в отсутствии неконтролируемого, неуправляемого движения рабочих органов, которое может быть причиной их поломки.

Типы гидрозамков

Гидрозамок представляет собой управляемый обратный клапан. Выделим два типа внутреннего устройства гидравлических замков:

  • односторонний, один запорный элемент, для перекрывания одной линии;
  • двусторонний, с двумя запорными элементами, может перекрыть две линии.

Особенности монтажа гидрозамка

Для монтажа гидравлического замка имеет значение расположение дросселей и тип устройства. Дроссель с обратным клапаном дает возможность свободно подниматься жидкости, но при спуске ее пропуск снижается.

Если в системе привода с гидрозамком дроссель отсутствует, при опускании золотника давления в гидролинии будет достаточно для открытия замка. Произойдет слив жидкости и начнется движение рабочего органа вниз.

Большая скорость перемещения штока приведет к снижению давления в поршневой полости, закрытию запорного элемента и прекращению движения. Далее происходит рост давления, замок открывается, продолжается перемещение рабочего органа.

Для предотвращения прерывистого движения в гидролинию устанавливается дроссель с обратным клапаном между гидроцилиндром и неразгруженным гидрозамком.

При опускании рабочего органа машины давление, которое создает сопротивление дросселя, хватит для открытия и поддержания клапана.

При установке дросселя за гидрозамком применяются разгруженные устройства. Давление дросселирования не оказывает влияния на управляющий поршень и замок при опускании рабочего органа не закрывается. Ненагруженный гидрозамок может срабатывать при давлении 0,02-32 МПа.

Для правильного выбора гидрозамка необходимо знать давление в напорной гидролинии, при котором замок открывается, и перемещается рабочий орган.

Возврат к списку

Источник: https://www.ugm74.com/stati/chtu-takoe-gidrozamki/

Как проверить дроссель с помощью мультиметра

Для чего нужен дроссель в машине

Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.

В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.

В светильниках

В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.

Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.

Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.

Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.

Проверка в лампах

Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.

До того, как проверить дроссель лампы, проверяются сама лампа и стартер.

Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.

Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.

В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.

Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.

В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).

Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Последовательность действия

Порядок проверки следующий:

  1. включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
  2. в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
  3. к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.

Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

Источник: https://evosnab.ru/instrument/test/kak-proverit-drossel-multimetrom

Регуляторы расхода рабочей жидкости для гидроприводов мобильных машин (Часть 1)

Для чего нужен дроссель в машине

Рабочие органы и исполнительные механизмы мобильных машин и механизмов с гидроприводом, применяемые в промышленном и гражданском строительстве, при ремонте и содержании дорог, в лесозаготовительном производстве, в коммунальном хозяйстве и т. д., приводятся в движение гидроцилиндрами или гидромоторами.

Для изменения скорости движения штоков гидроцилиндров двустороннего действия или частоты вращения приводных валов реверсивных гидромоторов применяют гидроаппараты, управляющие расходом рабочей жидкости (РЖ), которые в зависимости от свойств разделяют на два основных конструктивных исполнения: дросселирующие и регулирующие.

Дросселирующие гидроаппараты предназначены для создания гидравлического сопротивления потоку путем дросселирования расхода РЖ, который в свою очередь зависит от потери давления. К дросселирующим гидроаппаратам относятся синхронизаторы расходов (делители и сумматоры потока) и гидродроссели нерегулируемые и регулируемые, в том числе с обратным клапаном или без него.

Регулирующие гидроаппараты предназначены для поддержания заданного значения расхода независимо от значений перепада давлений в подводимом и отводимом потоках РЖ. К регулирующим гидроаппаратам относятся регуляторы расхода двухлинейные с изменяемым расходом на выходе и со стабилизацией в зависимости от температуры РЖ и трехлинейные с изменяемым расходом на выходе со сливом избыточного расхода в другую гидролинию или в бак гидросистемы.

Большинство дросселирующих гидроаппаратов представляют собой местные гидравлические сопротивления, в которых изменение расхода зависит от площади проходного сечения вследствие потери давления u001aР из-за деформации потока РЖ.

Дроссельное регулирование

При дроссельном регулировании расхода (обычно в контурах с насосами постоянной подачи) скорость движения исполнительных механизмов регулируют, изменяя проходное сечение дросселей. В этом случае используются три основные схемы установки дросселя в гидросистеме: на входе, на выходе и в ответвлении (рис. 1).

При анализе гидросистем установлено, что при дроссельном регулировании расход меняется в зависимости от давления, создаваемого внешней нагрузкой. Соответственно скорость исполнительного механизма и Δu001aР также зависит от внешней нагрузки и от формы и длины дросселирующей щели: конический дроссель, продольная канавка треугольной или прямоугольной формы, щелевой дроссель или кольцевой дроссель.

Дроссельные схемы регулирования скорости из-за больших потерь мощности малоэффективны, особенно при эксплуатации гидроприводов большой мощности. Однако дроссельное управление расходом проще и дешевле, поэтому для привода машин небольшой мощности или редко включаемого привода, например для плавного пуска и остановки машины, нередко применяют дроссельное регулирование, при котором часть РЖ сливается в бак, а ее энергия преобразуется в тепло, нагревая РЖ в гидросистеме.

На рис. 2, а, б показаны условное обозначение и продольные сечения двухлинейных регулируемых дросселей, предназначенных для встраивания в трубопроводы гидросистем.

Эти регулируемые дроссели с коническим запорным элементом патронного исполнения предназначены для регулирования расхода РЖ в обоих направлениях. Типичное применение – регулирование скорости движения штоков гидроцилиндров и частоты вращения гидромоторов.

Дроссель регулируемый типа 2CR30 имеет встроенный обратный клапан, который свободно пропускает поток РЖ в одном направлении, но с дросселированием потока в обратном направлении.

 Вращением запорного элемента можно изменять проходное сечение дросселя и регулировать расход РЖ приблизительно пропорционально виткам резьбы, а также использовать дроссель как запорный клапан. На рис. 3 показаны условное обозначение и общие виды регулируемых дросселей с обратными клапанами.

Эти регулируемые дроссели применяют для дросселирования потока в одном направлении и свободного прохода потока в обратном направлении. Дроссели имеют два дросселирующих золотника с регулировочными винтами и два обратных клапана, встроенных в корпус.

Поток РЖ от насоса проходит под низким давлением через обратный клапан от входного отверстия V к отверстию Р, соединяемому с гидродвигателем (см. графическое обозначение). Обратный поток РЖ от Р к V проходит при переменном дросселировании в зависимости от регулирования дросселирующим золотником.

Примеры применения регулируемых дросселей в типовых гидравлических схемах приведены на рис. 4.

Регуляторы расхода

Эти устройства применяются для поддержания постоянного расхода независимо от изменения давления. Принцип работы регулятора расхода показан на рис. 5. Регулятор расхода состоит из следующих основных элементов: дозирующего дросселя 1 и компенсатора давления 2 с пружиной 3. Изменение температуры и соответственно вязкости РЖ изменяет перепад давления. Чтобы уменьшить влияние этих факторов, применяется специальная форма дросселирующей щели.

Тип регулятора расхода зависит от конструкции компенсатора давления. Если компенсатор давления расположен последовательно с дозирующим дросселем, гидроаппарат является двухлинейным регулятором расхода, если параллельно – трехлинейным регулятором расхода.

В двухлинейных регуляторах расхода дозирующий дроссель и компенсатор давления расположены последовательно. При этом компенсатор давления может располагаться перед дросселем на входе (рис. 6, а) или после него на выходе (рис. 6, б). На рис. 6, а видно, что управляющая А1 и дозирующая А2 дросселирующие щели расположены последовательно. Золотник компенсатора нагружен справа давлением Р2 и слева давлением Р3 и усилием пружины FF.

Перепад давления на регулируемом дросселе в двухлинейном регуляторе расхода является отношением усилия регулируемой пружины регулятора давления FF к торцовой площади золотника АК и не зависит от последовательности расположения компенсатора давления: перед дросселем или после него.

На рис. 7 показаны условное обозначение и принцип работы двухлинейного регулятора расхода с компенсатором давления на выходе. Из рис. 7, б видно, что дозирующий дроссель и компенсатор давления двухлинейного регулятора расхода расположены последовательно. Место расположения компенсатора давления (на входе или на выходе) в двухлинейных регуляторах расхода определяется конструктивными соображениями.

Рассмотрим особенности применения двухлинейных регуляторов расхода при дросселировании потока РЖ: на входе (первичное управление), на выходе (вторичное управление) и в ответвлении.

При управлении расходом РЖ на входе (см. рис. 1, а) регулятор расхода устанавливают в напорной гидролинии насоса после предохранительного клапана, перед гидродвигателем. Эта схема дросселирования рекомендуется для гидросистем, в которых регулируется скорость движения гидродвигателя, преодолевающего противодействующее усилие (положительное сопротивление). В этом случае перед регулятором расхода действует нагрузка, определяемая внешним сопротивлением на гидродвигателе.

Недостатком этой схемы является необходимость настройки предохранительного клапана, установленного перед регулятором расхода, на максимально возможное давление в гидродвигателе. В результате насос постоянно работает под максимальным давлением, даже когда гидродвигатель преодолевает небольшую нагрузку. Кроме этого потери мощности при дросселировании потока превращаются в нагрев РЖ, которую необходимо охлаждать для стабилизации теплового режима.

При управлении расходом РЖ на выходе (см. рис.1, б) регулятор расхода устанавливают на выходе из гидродвигателя перед баком.

Такая схема управления расходом рекомендуется для гидросистем с попутной рабочей нагрузкой (отрицательной), которая стремится перемещать шток гидроцилиндра или вращать вал гидромотора быстрей, чем скорость потока РЖ, определяемая подачей насоса.

Сохраняется основной недостаток схемы дросселирования – необходимость настройки предохранительного клапана на максимальное давление и воздействие максимального давления на уплотнительные элементы гидроцилиндра даже при холостом ходе, т. е. с более высоким уровнем трения.

При управлении расходом в ответвлении (см. рис. 1, в) регулятор устанавливают паралелльно гидродвигателю. В этой схеме регулятор ограничивает расход РЖ, поступающей в гидродвигатель, путем перепуска части потока, нагнетаемого насосом, в бак гидросистемы. Если рабочий орган доходит до упора, давление в гидросистеме ограничивается настройкой предохранительного клапана, и слив потока РЖ через клапан вновь преобразуется в нагрев.

Преимуществом этой схемы регулирования расхода является ограниченное рабочее давление, которое определяется внешней нагрузкой на рабочем органе или на исполнительном механизме. При этом меньше мощности преобразуется в нагрев РЖ, а выделяемое при дросселировании тепло отводится в бак гидросистемы.

Из приведенного выше сравнения дросселирующих и регулирующих гидроаппаратов управления расходом РЖ следует явное преимущество регуляторов расхода, которые представляют собой комбинацию дросселя с регулятором, поддерживающим постоянный перепад давления на дросселирующей щели.

В отличие от двухлинейных регуляторов расхода, дозирующие А2 и управляющие А1 отверстия в трехлинейных регуляторах расхода расположены не последовательно, а параллельно.

ЭТО ИНТЕРЕСНО:  В каком году прекратили выпускать ваз 2101

Источник: https://os1.ru/article/7211-regulyatory-rashoda-rabochey-jidkosti-dlya-gidroprivodov-mobilnyh-mashin

Признаки неисправности Дроссельной заслонки

страница » ТехЗона » Признаки неисправности Дроссельной заслонки

17.01.2018

Дроссельная заслонка это механический регулятор – открыто/закрыто, как дамба со шлюзом, все достаточно просто, на первый взгляд. В автомобилях, по этому каналу проходит воздух, который строго дозируется на пути во впускной коллектор. Количество этого воздуха очень зависимо для разных режимов движения автомобиля.

Если дроссель неисправен, то автомобиль становится совсем другим – его как подменили. Основной виновник – это датчик положения этого самого регулятора, собственно заслонки. Он как раз и изнашивается. Датчик электронный, в нем, со временем стираются контакты, поэтому его поведение такое непредвиденное.

Признаки неисправности Дроссельной заслонки:

  1. Нестабильная работа мотора «на холодную»;
  2. Плавают обороты при разных режимах;
  3. При наборе скорости внезапно может пропасть тяга, как будто кто-то тянет вас назад или пристегнул тяжелый прицеп;
  4. Расход топлива увеличился в разы;
  5. На щитке приборов – как говорят сами автомобилисты, которые уже сталкивались с проблемой — «гирлянда». Светится лампочка «Чек», которая иногда гаснет и опять загорается;
  6. Мотор внезапно глохнет, а после повторного запуска может работать без проблем некоторое время, потом все повторяется;

Только ли в дроссельной заслонке может быть дело?

Конечно, в современных автомобилях подобные проблемы могут подкинуть еще ряд неисправных узлов и датчиков. Поэтому, самый главный друг ваш для определения проблемы – механик-электрик на СТО, с оборудованием, которое может считывать ошибки.

Как правило, определить, что именно дроссельная заслонка вышла из строя достаточно просто по коду ошибки.

К примеру, подобные симптомы могут быть при неисправном клапане EGR, в некоторых режимах, или «мертвом» датчике массового расхода воздуха (расходомер).

Не стоит путать банальную чистку заслонки с необходимой заменой. Показания для этих процедур разные. Как правило, замена производится при механическом износе датчика положения – потенциометра, а чистка при загрязнении. В настоящее время, на рынке запчастей появились высококачественные замены, альтернативные оригинальным дроссельным заслонкам, которые стоят достаточно дорого. Этот узел, чаще всего идет, как отдельная запчасть, и замена производится в сборе в блоком ДЗ.

:

Чип-тюнинг. Всегда ли он безопасен?

Источник: http://blog.autonovad.ua/tehzona/priznaki-neispravnosti-drosselnoy-zaslonki

Что такое дроссель?

коротко о главном »»

* Эта страница создана для тех, кто не знает, что такое «Дроссель» в автомобиле.

Для лучшего понимания причин плохой динамики разгона и повышенного расхода топлива нужно понять, что такое дроссель или дроссельный узел в автомобиле.

Для работы двигателя необходим кислород. Подачу воздуха вы регулируете с помощью акселератора. В народе акселератор называют педалью газа. Педаль газа соединена с устройством, которое называется дроссельный узел или просто дроссель.

Существуют два вида дросселя. Механический и электрический. Механический дроссель напрямую соединён с дроссельной заслонкой посредством тросика. На фотографии показан механический дроссель. И там хорошо видно большое отверстие закрытое дроссельной заслонкой.

Как работает дроссель?

Когда вы начинаете движение на автомобиле или «поддаёте газу» вы нажимаете на педаль газа. Автомобиль едет быстрее, автомобиль едет медленно. Нажимая на педаль газа, вы приводите в движение дроссельную заслонку, и тем самым регулируете подачу воздуха в двигатель. И заодно подачу топлива.

На картинке изображена условная схема дросселя. Наведите курсор на картинку, чтобы понять принцип работы.

Дроссельная заслонка соединена с датчиком положения дроссельной заслонки. И положение заслонки говорит компьютеру сколько топлива нужно подать в двигатель.

При нажатии на педаль газа воздух поступает в двигатель смешивается с топливом, и этот взрывной “коктейль” поступает в камеру сгорания, где происходит его поджег. Большие дозы ингредиентов, машина едет быстрее. Маленькие – медленнее. Вот таким незамысловатым образом, с помощью педали газа, вы отмеряете количество горючего “коктейля” и задаёте динамику движения автомобиля.

Где находится дроссель?

Вы поднимаете капот и находите корпус воздушного фильтра. От воздушного фильтра идёт, как правило, резиновый воздуховод. Но может быть и пластиковый. Этот воздуховод как раз соединяется с дросселем. То есть дроссель располагается между воздушным фильтром и двигателем. И крепится к двигателю.

Если вы загляните под капот и увидите конец тросика, который крепится к рычагу дроссельной заслонки, то это и будет тот самый – механический дроссель (см. фото).

Если вы нашли дроссель, но при всех стараниях не нашли тросик, то у вашего авто электрический дроссель. Его чаще называют электронным. Электрический дроссель управляется посредством электрического сигнала. Об особенности работы электрического дросселя и его влияния на динамику разгона автомобиля смотрите страницах:

  • тупит авто
  • это интересно

На стр. «это интересно» есть дополнительное описание и сравнение электрического и механического дросселя. А так же описан эффект после доработки дросселя.

У кого-то бывает так, что авто «думает» перед тем как ускориться, после того, как водитель нажал на педаль газа. Этой проблеме посвящена следующая страница сайта. Дополнительное описание и сравнения, как электрические и механические дросселя влияют на динамику разгона автомобиля.

к меню  ||  тупит авто »»

коротко о главном »»

Источник: https://www.as007.ru/dros.html

На что влияет дроссельная заслонка — Авто-мастерская онлайн

Дроссельная заслонка дроссельный узел (ДЗ и ДУ соответственно) необходим для регулировки воздушного потока, который необходим для приготовления топливно-воздушной смеси (ТВС) поступающей в цилиндры. Во время работы ДУ происходит его чрезмерное охлаждение, в результате чего возникают перебои в работе двигателя.

С целью недопущения подобного сценария, производитель доработал дроссельный узел, оснастив его подогревом, который осуществляется при помощи охлаждающей жидкости.

Летом, по мнению многих автовладельцев, подогрев ДЗ негативно влияет на работу двигателя и приводит к потере мощности и нестабильной работе силового агрегата. В результате, многие отключают подогрев ДУ на летний период, отмечая при этом улучшение производительности двигателя и существенный прирост динамики.

Однако это все по мнению некоторых автомобилистов, а как обстоят дела на самом деле и чем для двигателя может обернуться такая доработка? Давайте разбираться

Для чего отключать подогрев дроссельной заслонки?

По мнению приверженцев отключения обогрева дроссельного узла, ОЖ подогревает воздух излишне, что влияет на КПД двигателя.

Суть в том, что подогретый воздух содержит меньше кислорода, следовательно, ТВС будет менее производительной и сгорание горючей смеси будет проходить менее эффективно. Больше всего, по их мнению, это наблюдается в жаркую погоду, когда температура воздуха и без того высокая.

Отключение подогрева дроссельной заслонки позволяет повысить стабильность работы силового агрегата, а также получить небольшой прирост мощности в жаркую погоду.

Это все понятно, а как на самом деле?

На деле езда без подогрева ДУ не желательна, а в зимнее время отключение дроссельной заслонки может привести к обмерзанию ДУ. Из-за высокой влажности воздуха и отрицательной температуры наблюдается обмерзание заслонки, а также каналов, в том числе и каналов холостого хода.

Как насчет лета? В летнее время подогрев ДУ практически не влияет на температуру воздуха, который проходит через дроссельную заслонку, поскольку мощный поток воздуха (примерно 40 л/сек и 2400 л/мин) просто не успевает прогреться за такой короткий промежуток времени, проходя через дроссельный узел. Кроме того, температура ОЖ регулируется системой охлаждения независимо от времени года и температуры окружающей среды.

Если же вышеприведенные доводы показались вам недостаточно убедительными, вы можете лично проверить есть ли смысл отключать подогрев дроссельного узла. Как это сделать правильно?

Отключаем подогрев дроссельной заслонки

Делается сие мероприятие, как правило, на весенне-летний период, зимой подогрев ДЗ подключается обратно. Реализация задуманного происходит следующим образом, в магазине покупается специальный штуцер, хомуты и небольшой кусок резинового шланга.

Шланги входа и выхода ОЖ отсоединяются и соединяются между собой при помощи специального штуцера-переходника, в обход дроссельного узла.

Чтобы вовнутрь входа и выхода ОЖ на дроссельном узле ничего не попало, необходимо заглушить отверстия при помощи шланга, который одевается на соответствующие штуцера.

После такой доработки вы сможете лично убедиться в том, есть ли смысл отключать подогрев дроссельной заслонки. В случае если вы останетесь не удовлетворены таким тюнингом, вы без труда сможете все вернуть к прежнему состоянию, для этого шланги подключаются по старой схеме.

На этом у меня все, напишите в комментариях как вы считаете есть ли смысл отключать подогрев дроссельного узла и какие, на ваш взгляд, это можете иметь последствия. Если статья была вам полезна и вы хотите сказать «спасибо автору», в качестве благодарности вы можете поделиться этой статьей с друзьями в соц. сетях, используя соответствующие кнопки расположенные внизу. Спасибо за внимание и до новых встреч на ВАЗ Ремонт. Пока!

Источник: https://autogearspb.ru/uhod-za-avtomobilem/na-chto-vliyaet-drosselnaya-zaslonka.html

Чистка дроссельной заслонки. 5 частых ошибок при очистке дроссельного узла своими руками

Задача дроссельной заслонки (далее ДЗ) состоит в регулировке количества подаваемого воздуха во впускной коллектор. Ее положение регулируется в соответствии с положением педали акселератора. Привод заслонки может быть механическим (с помощью троса) и электронным (с помощью электродвигателя).

Положение ДЗ фиксируется специальным датчиком. Он передает соответствующую информацию на ЭБУ, а оно в свою очередь принимает решение о количестве подаваемого топлива и смене режима работы двигателя. Подробнее о её устройстве и функциях вы сможете прочитать в дополнительном материале на нашем сайте.

Признаки загрязнения дроссельной заслонки

Чтобы не перепутать симптомы, указывающие на чрезмерный нагар на заслонке, лучше для начала визуально её осмотреть и если на стенках узла дросселя нет видимых масляных или закоксованных отложений, то, с большей долей вероятности, чисткой дроссельной заслонки проблему вы не устраните.

Сами признаки выглядят так:

  • проблемный запуск двигателя;
  • неровная работа двигателя;
  • плавание оборотов на холостом ходу;
  • зависание оборотов двигателя;
  • провалы оборотов до полной остановки.

Ошибки при очистке дроссельной заслонки

Много неопытных автовладельцев могут произвести неправильную чистку дроссельного узла, как минимум рискуя не получить желаемого эффекта, а как максимум — и вовсе навредить и вывести ДЗ из строя. Поэтому важно понимать когда нужно делать процедуру, как это делать и какие средства использовать.

Грязная дроссельная заслонка

Чистая дроссельная заслонка

Чтобы правильно почистить дроссельную заслонку НЕ СТОИТ:

  1. Чистить заслонку в любой непонятной ситуации (даже шутки есть по этому поводу).
  2. Чистить заслонку не снимая её (эффективность такой чистки незначительна, поскольку зачастую есть возможность лишь удалить нагар на самой заслонке, а внутренние стенки и воздушные каналы заслонки не очищаются).
  3. При очистке ветошью использовать чрезмерное усилие, что может привести как к повреждению самой заслонки, так и рядом находящегося ДПДЗ.
  4. Использовать щетки, а не мягкие материалы. Такая ошибка тоже довольно часто приводит к потере работоспособности ДЗ, поскольку на некоторых дроссельных узлах внутренняя стенка и заслонка покрыты молибденом для ещё более гладкого прохождения воздуха. Этот слой зачастую путают с налетом и удаляют. Как результат — заслонка начинает либо «закусывать», либо пропускать лишний воздух (повышаются обороты).
  5. Забывать провести обучение дроссельной заслонки после чистки. Заслонки с электронной педалью газа нуждаются в правильном обучении ДЗ, чтобы выставить обороты холостого хода в требуемое значение.

Чистка дроссельной заслонки на Митсубиси и Ниссан требует особого подхода. Нужно действовать внимательно и аккуратно, чтобы не удалить защитный налет, так называемый «пятачок» — уплотнительное покрытие по контуру ДЗ. А также обязательно обучить заслонку для установки новых параметров работы двигателя).

Дроссельную заслонку стоит очищать каждые 30-50 тыс. км. Придерживаясь всех вышеизложенных рекомендаций и учитывая основные ошибки, которые делают неопытные автовладельцы, больше вопросов, как почистить дроссельную заслонку, будь-то механическая или электронная, возникнуть не должно. Для чистки необходим минимум приспособлений и затрат, всего-то: карбклинер и чистая ветошь, а также отвертка для демонтирования узла.

Алгоритм чистки

Теперь приведем пошаговый алгоритм правильной чистки дроссельной заслонки.

  1. В первую очередь необходимо добраться до самой заслонки. В разных двигателях конструкция разнообразна. Но как правило, для этого нужно снять воздуховод, который идет от заслонки до воздушного фильтра.
  2. Выполнить демонтаж заслонки. Для этого открутить несколько крепежных болтов (2-4 штуки), а также отсоединить необходимые разъемы (например, разъем с клапана продувки абсорбера).
  3. Для очищения необходимо пользоваться средством для чистки карбюратора. Их существует большое разнообразие, и в автомагазинах вы без труда найдете средство в соответствии с вашими предпочтениями и возможностями (о них мы поговорим далее).
  4. С помощью ветоши и упомянутого средства необходимо тщательно вытереть заслонку снаружи и внутри.
  5. Также нужно очистить защитную решетку (при ее наличии в вашем автомобиле).
  6. Сборка узла производится в обратном порядке.

Запомните, что чистить заслонку нужно тщательно, чтобы металл был максимально светлым. Это обеспечит после ее установки повышение динамических характеристик машины.

Легкий способ очистки дроссельной заслонки

Правильный способ очистки дроссельной заслонки

Чистка без снятия

Также многих автовладельцев интересует вопрос о том, как почистить дроссельную заслонку без снятия. Такие методы действительно существуют, однако сразу же нужно понимать, что качественная очистка возможна лишь при демонтаже заслонки.

Для этого вам понадобится специальное средство — очиститель впускного тракта. Можно пользоваться разными марками. Также для чистки можно использовать жидкость для чистки клапана EGR, WD-40, растворители.

Итак, порядок действий без снятия узла:

  1. Как и в предыдущем алгоритме нужно снять воздуховод, чтобы добраться до заслонки.
  2. С закрытой заслонкой нужно побрызгать на поверхность очищающей жидкостью, и удалить очищенную грязь с помощью ветоши.
  3. Открыть заслонку и убрать грязь с боковой поверхности.
  4. Постараться, чтобы чистящее средство попало во все каналы. Процедура чистки аналогична с помощью ветоши.

Повторимся еще раз, что для качественной очистки дроссельную заслонку нужно снять с автомобиля. А при установке ее обратно желательно поменять прокладку заслонки на новую. Благо, ее цена невелика.

Источник: https://etlib.ru/blog/219-kak-pochistit-drosselnuyu-zaslonku

Устройство и принцип работы дроссельной заслонки

Дроссельная заслонка – это одна из важнейших частей системы впуска двигателя внутреннего сгорания. В автомобиле она расположена между впускным коллектором и воздушным фильтром. В дизельных двигателях дроссель не нужен, однако, его все равно устанавливают на современных моторах на случай аварийной работы.

Аналогичная  ситуация и с бензиновыми двигателями при наличии в них системы управления подъемом клапанов. Основная функция дроссельной заслонки – подача и регулирование потока воздуха, необходимого для образования топливовоздушной смеси.

Таким образом, от корректной работы заслонки зависит стабильность режимов работы двигателя, уровень расхода топлива и характеристики автомобиля в целом.

Устройство дросселя

С практической стороны дроссельная заслонка является перепускным клапаном. В открытом положении давление в системе впуска равно атмосферному.

По мере закрытия оно уменьшается, приближаясь к значению вакуума (это происходит, поскольку двигатель фактически работает как насос). Именно по этой причине вакуумный усилитель тормозов соединен с впускным коллектором.

Конструктивно сама заслонка является пластиной круглой формы, способной поворачиваться на 90 градусов. Один такой оборот представляет собой цикл от полного открытия и до закрытия клапана.

Устройство дроссельной заслонки

Блок (модуль) дроссельной заслонки включает в себя следующие элементы:

  • Корпус, оснащенный несколькими патрубками. Они соединены с системами вентиляции, улавливания топливных паров и охлаждающей жидкости (для обогрева заслонки).
  • Привод, приводящий в движение клапан от нажатия на педаль газа водителем.
  • Датчики положения, или потенциометры. Они производят замер угла открытия дроссельной заслонки и подают сигнал в блок управления двигателем. В современных системах устанавливается два датчика контроля положения дросселя, которые могут быть со скользящим контактом (потенциометры) или магниторезистивные (бесконтактные).
  • Регулятор холостого хода. Он необходим для поддержания заданной частоты вращения коленвала в закрытом режиме. То есть обеспечивается минимальный угол открытия заслонки, когда педаль газа не нажата.
ЭТО ИНТЕРЕСНО:  Как трогаться с пробуксовкой

Виды и режимы работы дроссельной заслонки

Тип привода дросселя определяет ее конструкцию, режим работы и управление. Он может быть механический или электрический (электронный).

Устройство механического привода

Старые и бюджетные модели автомобилей имеют механический привод клапана, в котором педаль газа напрямую соединена с перепускным клапаном при помощи специального троса. Состоит механический привод для дроссельной заслонки из следующих элементов:

  • акселератор (педаль газа);
  • тяги и поворотные рычаги;
  • стальной трос.

Нажатие на педаль газа приводит в движение механическую систему из рычагов, тяг и троса, что заставляет заслонку совершить поворот (раскрытие). В результате в систему начинает поступать воздух и формируется топливовоздушная смесь.

Чем больше воздуха будет подано, тем больше поступит топлива и, соответственно, увеличится скорость. Когда акселератор находится в неактивном положении, заслонка возвращается в закрытое состояние.

Помимо основного режима, механические системы могут включать и ручное управление положением дросселя при помощи специальной ручки.

Принцип работы электронного привода

Устройство электронной дроссельной заслонки

Второй и более современный тип заслонок – электронный дроссель (с электрическим приводом и электронным управлением). Его приоритетными отличиями являются:

  • Отсутствие прямого механического взаимодействия между педалью и заслонкой. Вместо нее, используется электронное управление, что также позволяет изменять крутящий момент двигателя без необходимости нажатия на педаль.
  • Холостой ход двигателя регулируется перемещением дросселя автоматически.

Электронная система включает в себя:

  • датчики положения педали газа и дроссельной заслонки;
  • электронный блок управления двигателем (ЭБУ);
  • электрический привод.

Система управления электронной дроссельной заслонкой также принимает во внимание сигналы от коробки передач, системы управления климатом, датчика положения педали тормоза, круиз-контроля.

Графики выходных сигналов датчиков положения дроссельной заслонки

При нажатии на акселератор датчик положения педали газа, состоящий из двух независимых потенциометров, изменяет сопротивление в цепи, что является сигналом для электронного блока управления. Последний передает соответствующую команду на электропривод (моторчик) и поворачивает клапан дроссельной заслонки. Ее положение, в свою очередь, контролируется соответствующими датчиками. Они посылают ответную информацию о новой позиции клапана в ЭБУ.

Датчик текущего положения дроссельной заслонки представляет собой потенциометр с разнонаправленными сигналами и общим сопротивлением 8 кОм. Он располагается на ее корпусе и реагирует на вращение оси, преобразуя угол открытия клапана в напряжение постоянного тока.

В закрытом положении клапана напряжение будет около 0,7В, а в полностью открытом около 4В. Этот сигнал получает контроллер, узнавая таким образом о проценте открытия дроссельной заслонки. Исходя из этого, рассчитывается количество подаваемого топлива.

Графики выходных сигналов датчиков положения заслонки являются разнонаправленными. За управляющий сигнал берется разность между двумя значениями. Такой подход помогает справиться с возможными помехами.

Обслуживание и ремонт дросселя

При неисправности дросселя его модуль полностью меняется, но в некоторых случаях достаточно сделать корректировку (адаптацию) или чистку. Так, для более точной работы систем с электрическим приводом необходимо проводить адаптацию или обучение дроссельной заслонки. Такая процедура предполагает занесение в память контроллера данных о крайних положениях клапана (открытия и закрытия).

В обязательном порядке адаптация для дроссельной заслонки проводится в следующих случаях:

  • При замене или перенастройке электронного блока управления двигателя автомобиля.
  • При замене заслонки.
  • Если отмечается нестабильная работа двигателя в режиме холостого хода.

Проводится обучение блока дроссельной заслонки на СТО при помощи специального оборудования (сканеров). Непрофессиональное вмешательство может привести к некорректной адаптации и ухудшению эксплуатационных характеристик автомобиля.

Если проблемы возникают на стороне датчика, на приборной панели загорается лампочка, уведомляющая о неполадках. Это может свидетельствовать как о неправильной настройке, так и об обрыве контактов. Еще одной частой неисправностью является подсос воздуха, который можно диагностировать по резкому увеличению оборотов двигателя.

Несмотря на простоту конструкции, диагностику и ремонт дроссельного клапана лучше всего доверить опытному специалисту. Это обеспечит экономную, комфортную, а главное, безопасную эксплуатацию автомобиля и повысит срок службы двигателя.

(4 5,00 из 5)

Источник: https://techautoport.ru/dvigatel/vpusknaya-sistema/drosselnaya-zaslonka.html

Как выбрать датчик положения дроссельной заслонки

Датчик положения дроссельной заслонки (сокращенно ДПДЗ) – небольшое устройство, которое в большинстве случаев является простейшим потенциометром, т.е. предназначено для измерения напряжение. Специалисты так его и называют: потенциометр дроссельной заслонки.

Он устанавливается на одной с заслонкой оси и нужен для подачи напряжения (сигнала) на ЭБУ. Последний считывает сигнал и «понимает», какое положение в данный момент имеет заслонка.

Разберемся с тем, для чего нужен сам датчик, как его диагностировать и в случае нужды выбирать оригинальную или аналоговую запчасть.

Подробнее о назначении

Дроссельная заслонка автомобиля – один из важнейших конструктивных элементов впускной системы, которые отвечает за регулирование подачи воздуха. Без воздуха невозможно образование горючей топливно-воздушной смеси, а значит, сгорания топлива как такового.

Можно сразу отметить, что работа элемента может сильно ограничить всю систему, ведь если воздуха поступает недостаточно, то не удается реализовать всю мощность двигателя. И наоборот, если воздуха много, начинаются проблемы с зажиганием, а сама смесь горит слишком долго при невысоких (относительно нормы) температурах.

Решение оказалось и простым и сложным одновременно: кроме доведения до совершенства работы дроссельной заслонки, регулировать подачу топлива. Вот здесь на передний план и выходит ДПДЗ.

Датчик играет очень важную роль в том, как будет подаваться топливо. Сигнал с датчика считывается ЭБУ, а уже потом управляющий элемент регулирует подачу. В случае выхода датчика из строя система начинает работать неправильно. Зачастую автомобиль становится менее экономным, поскольку потребляет слишком много топлива. Одна из возможных более серьезных проблем: ухудшение динамики. Впрочем, об этом мы еще поговорим.

Конструктивные особенности

Сегодня можно встретить только 2 конструктивных исполнения датчиков положения дроссельной заслонки:

  1. Пленочно-резистивные. Часто их также называют просто «резистивным» или же «реостатными». Они имеют несколько резистивных дорожек. Являются теми самыми потенциометрами, которые выдают сигнал, снимает с подвижного контакта. Как только дроссельная заслонка открывается, начинает свое движение и находящийся внутри ползунок. Чем больше угол раскрытия заслонки, тем больше и напряжение – классический вариант применения закона Ома на практике;
  2. Бесконтактные. Все так же отвечает за формирование того напряжение, которое имеет зависимость от угла открытие заслонки. Вот только принцип работы основан на магниторезистивном эффекте. Магнитное сопротивление вещества имеет зависимость от того, как сориентирован образец относительного магнитного поля. При этом сам датчик получается компактным и очень надежным, так как между его чувствительными элементами нет механического контакта. Он служит дольше обычного «резистивного».

По-прежнему большинство ДПДЗ являются плечно-резистивные. Изучим их в подробностях.

Внутри датчика находится переменный, а также постоянный резистор. Общее их сопротивление обычно равняется 8 кОм. Крайний вывод датчика принимает опорное напряжение силой 5V, а другой соединяется с массой автомобиля. Средний же вывод, попутно проходя через резистор, подает на сигналы ЭБУ.

К примеру, если сигнальное напряжение меньше 0,7 V, управляющий элемент воспринимает дроссельную заслонку как полностью закрытую. Как полностью открытую – при поступлении сигнала более 4 V.

Водитель может сам проверить работоспособность датчика и правильность его установки по напряжению на сигнальном выводе.

Интересная особенность датчиков положения дроссельной заслонки

Попробуем разобраться с тем, отчего даже с исправным ДПДЗ двигатель может «споткнуться». Итак, вы нажимаете на педаль газа. Дроссельная заслонка начинает приоткрываться, о чем сразу же сигнализирует датчик. Однако здесь все не так просто: закончился режим работы на холостых ходах, и началось движение. Блок управления воспринимает сразу 2 сигнала одновременно.

Здесь проблемы и начинаются. Электронного-механическая часть работает с некоторой задержкой. Очевидно, датчик стоит настроить. К примеру, инженеры концерна Toyota пошли на небольшую хитрость: исходное положение контакта IDL, то есть отвечающего за холостой ход, регулируется при помощи упорного винта – образуют зазор 0,51 мм.

Такой способ регулировки актуален для большого числа автомобилей.

Величина регулировочного зазора на каждом типе двигателя своя. Об этом должны помнить специалисты, устанавливающие новый ДПДЗ. В ином случае ЭБУ не сможет вовремя «понять», что автомобиль уже не стоит на месте и прогревает мотор, а начинает движение.

Какие могут быть неисправности

Заранее отметим, что здесь легко спутать неисправности датчика с таковыми у других элементов. По этой причине само устройство нужно будет проверить самостоятельно, или же отправиться на СТО и поручить работу специалистам. Вот что вы можете заметить, будучи за рулем:

  • Загорелась лампочка «Check»;
  • Повысились или же начали «плыть» холостые обороты;
  • На нейтральной передаче двигатель внезапно глохнет;
  • Наблюдаются перебои в работе двигателя;
  • Вышеупомянутые «спотыкания»;
  • Серьезно ухудшилась динамика.

Практически все вышеперечисленное – результат создания проблемной топливно-воздушной смеси. Так что обойтись без помощи специалистов будет сложно. Однако, проверить датчик можно самостоятельно.

Как проверить ДПДЗ самому

Работа делается в несколько этапов:

  1. Включите зажигание;
  2. При помощи измерительного прибора (советуем обзавестись недорогим мультиметром) замерьте напряжение, которое действует между контактом ползунка и приборным «минусом». Норма: не более 0,7 V;
  3. Добейтесь полного открытия дроссельной заслонки, снова проследите за показания прибора. Напряжение должно равняться 4 V, не более;
  4. Выключим зажигание, затем вытяните разъем, после чего настройте прибор на замер эл. сопротивлений. Нас интересует сопротивление между любым из выводов и ползунком;
  5. Теперь поворачивайте сектор и следите за показаниями прибора – они должны плавно меняться. Если они меняются скачкообразно, в ДПДЗ есть серьезные неполадки.

Как и многие другие датчики, предмет статьи не относится к ремонтопригодным деталям. И более того, тонко настроенный «реостатный» датчик стоит менять при малейших огрехах в работе – со временем они будут становиться все более явными. Конечно, некоторые автолюбители занимаются пайкой начинки из резисторов, но даже после такого ремонта датчик функционирует исправно еще долгое время в очень редких случаях. Проще и надежнее купить новый.

Оперативные меры

В действительности неисправность ДПДЗ можно игнорировать очень долго – меняется расход топлива и появляются «провалы» при переключении передач. Не критично, но на комфорте езды сказывается. Предположим, водитель планирует купить новую деталь, но пока не может этого сделать по определенным причинам. Придется ездить, игнорируя неполадки? Да, придется, но последствия можно смягчить.

Итак, необходимо проделать следующее: выключить зажигание и сразу же завести автомобиль снова. Блок управления поступит следующим образом: показатель питания ДПДЗ он установит на том уровне, который соответствует питанию при закрытом дросселе.

После следующего запуска двигателя ЭБУ не допустит частых «провалов», которые бывают при переключении скоростей на автомобиле с неисправным датчиком.

Как купить новый ДПДЗ

Выбор методик у водителя невелик:

  1. Искать новую деталь по VIN-коду. Так он гарантированно купит тот датчик, который подойдет к его автомобилю. Мы советуем искать подобные запчасти по коду транспорта в силу высокой точности поиска. К тому же, так водитель быстрее всего найдет оригинал. Оригинальные датчики хоть и дорогие, но стоят своих денег;
  2. По данным транспорта. В случае покупки датчика дроссельной заслонки данный метод хорош, но хорош недостаточно. Проблема кроется в аналогах. Скорее всего, водитель сможет найти множество неоригинальных датчиков, которые на первый взгляд ничем не уступают заводской детали. Прослужит купленный неоригинал не так долго, и не факт, что будет полностью соответствовать оригиналу. Об этом мы сейчас расскажем подробнее.

И наконец: критичнее относитесь к советам даже бывалых автолюбителей – лучше ищите нужную запчасть самостоятельно, руководствуясь только данными из техпаспорта. А дело вот в чем: покупая неоригинал, вы не будете уверены в адаптации заслонки. Выше мы писали о том, что для исправной работы датчика в заслонке должен быть небольшой зазор.

К примеру, он есть на всех автомобилях марки Toyota и составляет 0,51 мм.

И вы не можете быть уверены в том, что даже качественный неоригинал будет правильно определять положение дроссельной заслонки – недобросовестный производитель вполне мог поместить внутрь корпуса посредственный потенциометр и не учесть особенность двигателя транспортного средства.

И последняя проблема неоригиналов: их работы целиком завязана на температуре. Это означает, что корпус ДПДЗ будет серьезно нагреваться. А одно из правил электротехники говорит нам о том, что электрические свойства материалов меняется с ростом или понижением температуры. Как результат, ЭБУ двигателя на изменения напряжение (в данном случае на рост) датчика оперативно реагировать не сможет.

Экскурс по брендам

Исходя из вышеуказанного, мы советуем вам брать оригинальный датчик. Конструктивно он полностью соответствует конкретной модели транспортного средства. И устанавливать его, кстати, лучше на СТО. Мастера лучше справятся с данной работой, хотя она по силу и автолюбителю.

Выбор неоригиналов очень широк, однако, на вторичном рынке запчастей можно выделить всего несколько производителей датчиков достойного качества:

  • Hella (Германия). Как говорят многие водители, датчики этого производителя оригиналам практически не уступают;
  • Bosch (Германия). Еще один немецкий производитель, успевший себя зарекомендовать. И не где-нибудь, а во всем мире. Цена может неприятно удивить покупателя. Однако, немецкие датчики являются лучшими среди всех прочих аналогов;
  • Era (Италия). Широко известный в Европе производитель. Его продукция соответствует всем стандартам качества. А вот что хотел бы знать водитель, так это то, что итальянские датчики особо оригиналам не уступают. Начиная с 2010 года качество продукции, равно как и ее ассортимент, начало выходить на принципиально новый уровень;
  • Dello (Германия). Выпускается продукция под именем марки AutoMega. Важно помнить также о том, что часть запчастей Dello производится в Китае и по качеству очень сильно уступает продукции немецкого производства. Покупать стоит немецкие датчики;
  • Hotaru (Китай). Это бренд, известный разве что в странах Восточной Европы. Ассортимент продукции не очень широк, но качество всегда на высоте.

А вот какие бренды предлагают аналоги по самой демократичной цене:

  • JP Group (Дания). Известный в Европе производитель, меньше – в странах Востока. Твердый «среднячок», но очень хорошей цене;
  • Topran (Германия). Немецкое качество по выгодной для автовладельца цене. Существуют и другие немецкие производители доступных аналогов, но все-таки Topran однозначный лидер среди них;
  • Lucas (Великобритания). Продукция данной фирмы находится где-то на периферии между премиум-классов и бюджетными аналогами. Качество и отказоустойчивость английских датчиков высокие, ассортимент тоже неплохой.

Какой бы датчик вы ни брали, он должен соответствовать изложенным автоконцерном параметрам. В ином случае ни экономии топлива, ни улучшения динамики вы не почувствуете. Выбирая правильно дешевый аналог, желаемого результата водитель, тем не менее, тоже не получит. Здесь имеет смысл переплатить.

Вывод

Выбор ДПДЗ нельзя назвать чем-то сложным. Водителю лишь нужно знать код транспорта или характеристики своего транспорта. А вот знание брендов действительно важно. Выше мы указали «призеров» зрительских симпатий. Что действительно не стоит вашего внимания, так это самые дешевые запчасти, продающиеся на рынке.

Да и рынок не лучшее место для покупки датчиков – советуем отдать предпочтение крупным магазинам с хорошей репутацией. При покупке не забывайте осматривать упаковку, проверять запчасть по защитному коду и выявлять физические повреждения – возможно, перед вами подделка.

Только фирменная запчасть прослужит вам долго.

Источник: https://avto.pro/autonews/kak_vibrat_datchik_polozheniya_drosselnoy_zaslonki-20170402/

Дроссельная заслонка ваз 2112 16 клапанов — Авто-ремонт

Ремонт ВАЗОписание дроссельная заслонка ваз 2112 16 клапанов

Штатная дроссельная заслонка ВАЗ 2110 (дроссельный узел) имеет диаметр 46 мм. Многие любители тюнинга в поисках новых ощущений решаются заменить эту деталь на альтернативную, с большим диаметром (52, 54 или 56мм). А Вы знаете, есть ли польза от такого тюнинга?
ЭТО ИНТЕРЕСНО:  Как поменять температуру на томагавк 9010

В интернет-магазинах часто предлагают вместо штатного 46мм дроссельного узла (ДУ) установить 52, 54 или 56мм. В описании товара написано, что увеличенный дроссель (патрубок (корпус) дроссельной заслонки) снижает скорость воздушного потока и способствует увеличению производительности впускной системы по воздуху.

Эффект от установки будет особенно заметен если в системе используется фильтр нулевого сопротивления. Рекомендуется устанавливать дроссель диаметром 52 мм, т.к. диаметр воздушного входного отверстия стандартного ресивера 53мм.Чтобы установить дроссельный узел другого диаметра, как правило ничего дорабатывать не требуется.

Максимум, что потребуется сделать, это немного подрезать прокладку (чаще всего при установке дроссельного узла 56мм). После установки многие замечают положительные эффекты:

  1. Машина становится более резвой.
  2. Пропали проблемы с холостыми оборотами.
  3. Педаль газа становится более отзывчивой.

Есть и недостатки:

  1. Увеличивается расход топлива по БК и якобы показания не верные, расход не изменился.

Другие владельцы «десяток» видят эффект только на 16кл. моторах.На самом деле картина описанная выше может быть представлена несколько иначе. Положительный эффект, который многие замечают при установке дроссельного узла большего диаметра связан с тем, что старый дроссельный узел нуждался в чистке и двигатель работал неправильно. После установки нового ДУ мотор начинает работать в штатном режиме, что представлялась как «новое дыхание».

Другими словами, машина стала бы более резвой, а педаль более отзывчивой после элементарной чистки ДУ.Кроме того, после установки ДУ с большим диаметром появляются новые проблемы в работе двигателя, которых раньше не было. Связано это с тем, что соотношение бензина и воздуха нарушается, и ЭБУ корректировать его не в силах. Вместо того, чтобы вернуть дроссельный узел штатного диаметра многие решаются на замены прошивки.

Многие придерживаются такой позиции, что ДУ 52, 54 или 56мм бесполезная вещь, но если он установлен в комплексе с другим тюнингом двигателя, то эффект однозначно будет заметен. Однако, не ясно, этот эффект будет вызван ДУ или все таки другими доработками мотора. Ведь даже на турбо двигателе мощность которых не более 200л.с. оставляют стандартные 46мм дроссельные заслонки, и их вполне хватает.

А какие Вы можете оставить отзывы о дроссельном узле 52, 54 или 56мм?

xn--2111-43da1a8c.xn--p1ai

Доработка Дроссельного Узла на ВАЗ

В процессе эксплуатации автомобилей ВАЗ выявляется множество моментов, которые конструкторы оставили без внимания. Например, дроссельный узел (ДУ) на некоторых комплектациях автомобиля имеет дефект, который может приносит ряд проблем, такие как: глохнет двигатель в момент переключения передач, плохо запуск двигателя на прогретой машине, вибрация двигателя на холостых и т.д.

Об один из дефектов завода говорится в информационном письме №32-2004-И по устранению неисправности «Глохнет двигатель в момент переключения передач».Похожее упущение есть и на двигателях с металлическом ресивером. Если мыслить логически, то из пространства перед ДУ в пространство за ним, должна быть перетечка воздуха. Для этого в нем есть канал диаметром примерно 2.5мм. В прокладке между дроссельным узлом и ресивером для этого канала есть отверстие.

Но проблема в том, что канал упирается в стенку ресивера. Получается, что на заводе проектировщик дроссельного узла предусмотрел перетечку, а конструктор ресивера про нее просто забыл.Первым делом нужно снять дроссельный узел ВАЗ 2110 (инструкция).Чтобы модернизировать дроссельный узел потребуется напильник. С помощью него нужно проточить канавку в 2-3мм в указанном месте.

 В результате данная доработка ДУ устраняет некоторые болезни инжектора, например, когда плохо заводится на горячую. За счет уменьшения разрежения в ресивере — увеличился выбег. То есть теперь можно на трассе прокатиться 500м с нулевым расходом топлива, и при этом скорость упадет на 7-10 км/ч. Кроме этого увеличилась тяга на низах и пропали вибрации двигателя на холостом ходе.

Внимание !

Прибегать к такой доработке следует лишь в том случае, если Вы действительно уверены в том, что делаете. Может быть Ваши проблемы решит банальная чистка дроссельного узла ?

xn--2111-43da1a8c.xn--p1ai

Чистка дроссельного узла

Дроссельный узел (ДУ) регулирует подачу воздуха в двигатель, тем самым влияет на обогащение топливной смеси. Неисправности ДУ могут вызвать неправильную работу двигателя. В этом случае ДУ обычно меняют на новый, но чаще всего проблемы двигателя решает промывка дроссельного узла своими руками.

Чтобы очистить ДУ нам понадобится:

  1. Отвертки;
  2. Ватные палочки;
  3. Зубная щетка (чем старее щетина, тем лучше);
  4. Чистящее средство;
  5. Перчатки.

Итого 120 рублей.Перед началом работ деталь лучше снять. Снятие дроссельного узла есть в руководстве по сервисному обслуживанию ВАЗ 2110.Если процедура чистки ДУ ни разу не проделывалась, то скорее всего прокладку необходимо заменить.

Откручиваем два винта удерживающих РХХ (регулятор холостого хода) и снимаем его (отверстия его крепления устроены так, что перепутать с его обратной установкой не получится).Чистка ДУ, как Вы уже догадались, осуществляется чистящим средством, зубной щеткой и ватными палочками. Чистим все каналы и скрытые полости, особое внимание уделяем месту посадки РХХ и области расположенной рядом с самой заслонкой.

По окончанию работа узел должен быть идеально чист.Не забываем прочистить канал вентиляции картерных газов. Размер его не большой, поэтому его удобнее продувать вместе с чистящим средством. Продуть удобно ножным насосом, потому что диаметр штуцера для шланга одинаковый с колесным. Последний этап — замена патрубков ДУ или продувка их сжатым воздухом. Все это позволит продлить ресурс ДМРВ. Сборка и установка ДУ в обратной последовательности.

ЭТО ИНТЕРЕСНО:  Масса приборной панели ваз 2114

Чистый ДУ сделал работу двигателя на ХХ более стабильной, обороты двигателя больше не плавают. Появился четкий отклик на работу педали газа. Кстати, дроссельный узел по возможности дорабатывают.

xn--2111-43da1a8c.xn--p1ai

Источник: https://555-shop.ru/vaz/drosselnaya-zaslonka-vaz-2112-16-klapanov.html

Что такое дроссель и для чего он нужен?

В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе.

 Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике.

 Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.

Конструкция и принцип работы

Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:

Внешний вид изделия может быть таким, как на фото:

Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.

Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике.

Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление.

Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.

Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.

Интересное пояснение по данному вопросу вы также можете просмотреть на видео:

Наглядное сравнение, объясняющее принцип работыТеоретическая часть вопроса

Область применения

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.

Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:

Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь.

В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение.

Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.

В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.

Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.

В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.

В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.

С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.

Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.

Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!

Будет интересно прочитать:

Источник: https://samelectrik.ru/chto-takoe-drossel.html

Дроссельная заслонка

Дроссельная заслонка является конструктивным элементом впускной системы бензиновых двигателей внутреннего сгорания с впрыском топлива и предназначена для регулирования количества воздуха, поступающего в двигатель для образования топливно-воздушной смеси. Дроссельная заслонка устанавливается между воздушным фильтром и впускным коллектором.

По своей сути дроссельная заслонка является воздушным клапаном. При открытой заслонке давление во впускной системе соответствует атмосферному давлению, при закрытии — уменьшается до состояния вакуума. Это свойство дроссельной заслонки используется в работе вакуумного усилителя тормозов, для продувки адсорбера системы улавливания паров бензина.

Дроссельная заслонка может иметь механический привод или электрический привод с электронным управлением.

Дроссельная заслонка с механическим приводом

Механический привод дроссельной заслонки в настоящее время применяется на большинстве бюджетных машин. Привод предполагает связь педали газа и дроссельной заслонки с помощью металлического троса.

Элементы дроссельной заслонки объединены в отдельный блок, который включает корпус, дроссельную заслонку на валу, датчик положения дроссельной заслонки, регулятор холостого хода.

Корпус дроссельной заслонки включен в систему охлаждения двигателя. В нем также выполнены патрубки, обеспечивающие работу системы вентиляции картера и системы улавливания паров бензина.

Регулятор холостого хода поддерживает заданную частоту вращения коленчатого вала двигателя при закрытой дроссельной заслонке во время пуска, прогрева и при изменении нагрузки во время включения дополнительного оборудования. Он состоит из шагового электродвигателя и соединенного с ним клапана, которые изменяют количество воздуха, поступающего во впускную систему в обход дроссельной заслонки.

Дроссельная заслонка с электрическим приводом

На современных автомобилях механический привод дроссельной заслонки заменен на электрический привод с электронным управлением, что позволяет достичь оптимальной величины крутящего момента на всех режимах работы двигателя. При этом обеспечивается снижение расхода топлива, выполнение экологических требований, безопасность движения.

Отличительными особенностями дроссельной заслонки с электрическим приводом являются:

  • отсутствие механической связи между педалью акселератора и дроссельной заслонкой;
  • регулирование холостого хода путем перемещения дроссельной заслонки.

Так как между педалью газа и дроссельной заслонкой нет жесткой связи, используется электронная система управления дроссельной заслонкой. Электроника в управлении дроссельной заслонкой позволяет влиять на величину крутящего момента двигателя, даже если водитель не воздействует на педаль газа. Система включает входные датчики, блок управления двигателем и исполнительное устройство.

Помимо датчика положения дроссельной заслонки в системе управления используется датчик положения педали акселератора, выключатель положения педали сцепления, выключатель положения педали тормоза.

В работе системы управления дроссельной заслонкой также используются сигналы от автоматической коробки передач, тормозной системы, климатической установки, системы круиз-контроля.

Блок управления двигателем воспринимает сигналы от датчиков и преобразует их в управляющие воздействия на модуль дроссельной заслонки.

Модуль дроссельной заслонки состоит из корпуса, собственно дроссельной заслонки, электродвигателя, редуктора, возвратного пружинного механизма и датчиков положения дроссельной заслонки.

Для повышения надежности в модуле устанавливается два датчика положения дроссельной заслонки. В качестве датчиков используются потенциометры со скользящим контактом или бесконтактные магниторезистивные датчики. Графики изменения выходных сигналов датчиков направлены навстречу друг другу, что позволяет их различать блоку управления двигателем.

В конструкции модуля предусмотрено аварийное положение дроссельной заслонки при неисправности привода, которое осуществляется с помощью возвратного пружинного механизма. Неисправный модуль дроссельной заслонки заменяется в сборе.

Источник: http://systemsauto.ru/vpusk/throttle_body.html

Электронный дроссель в современных автомобилях

Современные автопроизводители все больше исключают человеческий фактор во всех возможных частях машин, там, где можно заменить его действием электронных систем. Одним из таких устройств, устанавливаемых массово на импортные, а теперь и на отечественные автомобили, является электронная дроссельная заслонка.

Зачем нужен дроссель с электроприводом

Дроссель на бензиновых автомобилях — необходимая часть впускной системы, регулирующей поступающие в агрегат воздушные потоки, которые участвуют в формировании топливно-воздушной смеси. Электронный привод — усовершенствованный вариант дросселя, находящегося между фильтром и коллектором впускной системы.

При нажатии на педаль газа заслонка открывается, впуская поток воздуха. Подобный электронный механизм обеспечивает большую экономичность и стабильность в управлении агрегатом за счет исключения из процесса человеческого фактора.

Впервые электронный дроссель стал появляться на авто немецких производителей в конце 90-х годов прошлого века, к нашим автолюбителям такие машины попадали уже с пробегом.

Суть системы — полностью автоматизированное управление приводом дросселя, благодаря чему обеспечивается лучшая подготовка воздушно-топливной смеси. Подобное решение снижает расход топлива, его более эффективное сжигание и снижение выхлопов.

Особенности электронного дросселя

Управляемый электронным дроссель обеспечивает оптимальную величину крутящего момента независимо от того, в каком режиме запущен двигатель. Основные особенности такого устройства:

  • между дросселем и педалью исчезла прямая связь через трос;
  • возможность изменения положения заслонки для регулировки холостого хода.

Сам механизм остается прежним, изменения касаются только привода. Отсутствует трос, соединяющий ось дросселя с педалью акселератора. В электронном варианте движение оси обеспечивается электромотором, а педали остается функция дистанционного пульта. Положение заслонки меняется автоматически, в той мере, в которой нужно для конкретных параметров работы агрегата.

Замена обычного дросселя устройством с электроприводом — один из частых этапов современного тюнинга авто всех марок и самых разных годов выпуска.

Благодаря такому решению система самостоятельно выбирает необходимую величину крутящего момента без нажатия на педаль. Соответствующие датчики и выключатели делают управление более точным.

Поступающие в электронный блок управления сигналы преобразуются в реальные воздействия и система выбирает оптимальное открывание заслонки в зависимости от актуальных нагрузок двигателя.

На сайте http://tuningkod.ru можно узнать более детальную информацию о современных дросселях с электронным приводом.

Источник: https://www.autodela.ru/main/blogs/alex_avto/elektronnyy-drossel-v-sovremennyh-avtomobilyah

Понравилась статья? Поделиться с друзьями:
АвтоРем