Что такое гидромеханическая передача

Гидромеханическая трансмиссия – все ради комфорта

Что такое гидромеханическая передача

Традиционное устройство автомобиля включает в себя в качестве обязательного элемента его конструкции такие узлы, как сцепление и КПП. Однако меняющийся стиль и образ современной жизни, с уклоном в сторону обеспечения все большего комфорта, приводит к изменению этих традиционных узлов машины. Им на смену зачастую приходит гидромеханическая трансмиссия.

Трансмиссия? А это что такое и зачем?

Для автомобиля трансмиссией будет всё, что обеспечивает поступление крутящего момента к колёсам от двигателя, в том числе КПП и сцепление. В классическом транспортом средстве это было именно так.

Но, как уже отмечалось выше, в современных легковых автомобилях им на смену приходит АККП. В этом случае управление машиной значительно упрощается – не надо пользоваться сцеплением и переключать вручную КПП.

Педаль сцепления просто-напросто отсутствует, а переключения выполняются автоматически.

Происходит это благодаря гидромеханической коробке передач. Чтобы понять, что это такое, лучше всего вспомнить о двух основных моментах, возникающих во время управления автомобилем:

  • необходимости отключения от двигателя трансмиссии при переключении передач;
  • изменении значения крутящего момента, передаваемого от мотора к колесам при изменении дорожных условий.

В обычной автомашине это происходит при нажатии на сцепление и переключении ручки коробки передач. Однако в машинах с АКПП подобное действие во многих случаях выполняет гидромеханическая коробка передач.

Об устройстве гидромеханической коробки

Говоря про устройство применяемой в составе легкового автомобиля гидромеханической коробки передач, надо отметить ее основные узлы:

  1. гидротрансформатор;
  2. управляющие механизмы;
  3. механическая коробка передач.

Про гидротрансформатор

Основой гидромеханического автомата является гидротрансформатор. Фактически в гидромеханической АКПП он выполняет роль, аналогичную сцеплению в обычном автомобиле – передает момент от двигателя к коробке.

Как видно из рисунка, устройство гидротрансформатора довольно простое и включает в себя три колеса специальной формы:

  • насосное, осуществляющее связь между двигателем и гидротрансформатором;
  • турбинное, выполняющее связь с валом (первичным) коробки передач;
  • реакторное, предназначенное для усиления крутящего момента.

Все эти турбины закрыты специальным корпусом и на три четверти погружены в масло, заполняющее внутренний объем. Гидромеханический привод работает таким образом – насосное колесо, на которое поступает вращающий момент от двигателя, вращаясь, направляет на турбинное колесо поток масла, которое им раскручивается и предает усилие на вал коробки передач.

Происходит циркуляция масла по сложной траектории – с внешней части насосного кольца на внешнюю часть турбинного, а затем через центр устройства обратно к насосному. Следствием такого движения является гидромеханическая передача момента к коробке передач от мотора.

Такой гидромеханический привод обладает особенностью – из-за присутствия третьего, реакторного колеса, возможно усиление передаваемого момента. Происходит это благодаря его расположению в центре гидротрансформатора.

Когда осуществляется гидромеханическая передача момента, поток масла от турбинного колеса направляется к центру устройства и затем возвращается обратно к насосному. Однако на его пути расположено реакторное колесо, и поток, оказывая на него давление, вызывает с его стороны ответную реакцию, которая, воздействуя на турбину, усиливает момент, переданный от насосного колеса.

Такое дополнительное воздействие, возникающее, когда происходит гидромеханическая передача мощности от мотора, приводит к тому, что она увеличивается. Величина усиления зависит от разности скоростей межу колесами гидротрансформатора, чем она больше, тем более значительным оно будет.

Это особенно полезно при начале движения, когда выполняется гидромеханическая передача мощности от двигателя, работающего на холостом ходу, к неподвижной трансмиссии.

Очень полезным фактом являет то, что гидравлический привод автоматически устанавливает нужное передаточное число между колесами и двигателем, благодаря изменению величины напора жидкости при ее передаче между напорным и турбинным дисками.

Однако диапазон такого изменения достаточно небольшой, и при этом отсутствует возможность, используя гидромеханический привод, разорвать связь между трансмиссией и мотором, поэтому гидротрансформатор работает последовательно с планетарной коробкой, позволяющей устранить отмеченные недостатки.

Про планетарную коробку

В гидромеханической АКПП чаще всего используется планетарный механизм, устройство которого понятно из приведённого ниже рисунка.

В самом простейшем варианте крутящий момент поступает на солнечную шестерню 6, с которой шестерни-сателлиты 3 находятся в постоянном зацеплении, они свободно вращаются на своих осях. На них установлено водило 4, соединенное с валом 5, сателлиты 3 постоянно находятся в зацеплении с шестерней 2, на внутренней поверхности которой имеются зубья.

Когда коронная шестерня 2 заторможена, момент через водило 4 поступает на ведомый вал, а когда шестерня расторможена, то сателлиты передают момент на нее, а ведомый вал остается неподвижным.
В АКПП используются фрикционные муфты сцепления и ленточные тормоза, а управление ими осуществляется с помощью гидромеханической системы, представляющей собой различные каналы, пружины и насос для создания давления масла.

Достоинства и недостатки гидромеханической коробки

В соответствии с приведенным описанием конструкцию гидромеханической коробки передач можно представить как последовательное соединение гидротрансформатора, коробки передач (обычно планетарной) с фрикционами, а также гидравлической системой управления.
Достоинством такой АКПП считаются:

  1. исключение ручного переключения передач;
  2. обеспечение передачи мощности без прерывания и рывков, особенно при начале движения.

Однако такая АКПП обладает и своими недостатками. Один из них – потеря крутящего момента, вызванная тем, что в состав автоматизированной коробки входит гидротрансформатор.

По данным проведенных замеров, эффективность подобной АКПП не превышает восьмидесяти шести процентов, тогда как у обычной механической коробки она составляет девяносто восемь процентов.

Однако это самый простой вариант гидромеханической АКПП, разрабатываются и устанавливаются на легковые автомашины новые, значительно более совершенные варианты подобной коробки.

Гидромеханическая коробка позволяет освободить водителя от их переключения при движении автомашины, что особенно актуально для начинающих водителей, повысить безопасность движения и обеспечить при этом дополнительный комфорт.

Источник: https://znanieavto.ru/kpp/gidromexanicheskaya-korobka-peredach.html

Гидромеханическая передача автомобиля

Современные механические трансмиссии надежны в работе и имеют сравнительно высокие к. п. д. (0,85— 0,95). Однако одним из недостатков их является разрыв потока мощности от двигателя при переключении передач, вызывающий замедление движения, что снижает интенсивность разгона и ухудшает проходимость автомобиля.

Наряду с этим правильность выбора момента переключения передач в зависимости от условий движения во многом зависит от квалификации водителя, а поэтому выбор момента переключения передач не всегда близок к наиболее выгодным режимам работы двигателя, что существенно снижает срок службы автомобилей и автобусов и ухудшает их экономичность.

Значительное же число переключений передач в городских условиях движения вызывает сильное утомление водителя. Для устранения этих недостатков на легковых автомобилях ЗИЛ-4104, ГАЗ-14 «Чайка», автобусах ЛиАЗ-677М, ЛАЗ-4202, а также на автомобилях-самосвалах особо большой грузоподъемности БелАЗ-7522, -7525 и др. применяют гидромеханические передачи, устанавливаемые вместо сцепления и коробки передач.

При наличии гидромеханической передачи скорость движения автомобиля управляется лишь педалью управления дроссельной заслонкой и при необходимости педалью тормоза.

Гидромеханическая передача состоит из двух основных частей: гидромеханического трансформатора и двух-, трех- или четырехступенчатой коробки передач, действующей автоматически в зависимости от изменения скоростного и нагрузочного режимов работы автомобиля.

Гидромеханический трансформатор. Включаемый между двигателем и трансмиссией автомобиля гидротрансформатор представляет собой гидравлический механизм, обеспечивающий автоматическое изменение передаваемого от двигателя крутящего момента в соответствии с изменениями нагрузки на ведомом валу коробки передач.

В гидротрансформаторе (рис. 14.24, б) имеются три рабочих колеса с криволинейными лопатками: 2 — вращающееся насосное, 4 — турбинное и 3— колесо-реактор. Насосное колесо соединено с корпусом (ротором) гидротрансформатора и через него — с коленчатым валом (рис. 14.24, а) двигателя.

Турбинное колесо связано через ведомый вал 5 с трансмиссией автомобиля.

Рекламные предложения на основе ваших интересов:

Колесо-реактор установлено на неподвижном пустотелом валу 6, закрепленном на картере гидротрансформатора. Муфта свободного хода позволяет колесу-реактору вращаться только в одном направлении попутно с вращением насосного колеса.

Турбинное колесо, колесо-реактор и насосное колесо установлены внутри корпуса, закрепленного на маховике 9 (см. рис. 14.24, б) двигателя.

Внутренняя часть корпуса 8 является рабочей полостью гидротрансформатора, которая заполняется циркулирующим под давлением маловязким маслом.

Корпус гидротрансформатора в сборе с расположенными в нем рабочими колесами помещен на подшипниках внутри закрытого неподвижного картера, передняя часть которого является опорой гидротрансформатора при установке его на автомобиле или автобусе.

При работе гидротрансформатора масло, нагнетаемое в рабочую полость, захватывается лопатками вращающегося насосного колеса, отбрасывается центробежной силой вдоль криволинейных лопаток к его наружной окружности и поступает на лопатки турбинного колеса. В результате создаваемого при этом напора масла турбинное колесо приводится в движение вместе с ведомым валом.

Далее масло поступает на лопатки колеса-реактора, изменяющего направление потока жидкости, и затем в насосное колесо, непрерывно циркулируя по замкнутому кругу рабочей полости и участвуя в общем вращении с колесами гидротрансформатора, как указано стрелками.

От давления масла, приложенного к турбинному колесу, заклинивается муфта свободного хода, благодаря чему колесо-реактор становится неподвижным.

Наличие неподвижного колеса-реактора (лопатки которого расположены так, что они изменяют направление проходящего через него потока жидкости) способствует возникновению на лопатках реактора реактивного момента, воздействующего через жидкость на лопатки турбинного колеса дополнительно к моменту, передаваемому на него от насосного колеса. Следовательно, колесо реактора дает возможность получать на валу турбинного колеса крутящий момент, отличный от момента, передаваемого двигателем.

Чем медленнее вращается турбинное колесо (по сравнению с насосным) от приложенной к валу турбинного колеса внешней нагрузки, тем значительнее лопатки реактора изменяют направление проходящего через него потока жидкости и тем больший дополнительный момент передается от колеса-реактора турбинному колесу, в результате чего увеличивается крутящий момент, передаваемый от его вала на трансмиссию.

Способность гидротрансформатора автоматически изменять (трансформировать) соотношение моментов на валах в зависимости от соотношения частоты вращения ведущего и ведомого валов, а следовательно, и от внешней нагрузки является его основной особенностью. Таким образом, действие гидротрансформатора подобно действию коробки передач с автоматическим изменением передаточных чисел.

Но так как диапазон изменения крутящего момента гидротрансформатором недостаточен для различных условий движения автомобилей, а также он не обеспечивает получение передачи заднего хода, на автомобилях и автобусах гидротрансформатор обычно устанавливают с механической коробкой передач.

Типичным примером взаимодействия гидротрансформатора и механической коробки передач является гидромеханическая передача (рис. 14.25) автобуса ЛиАЗ-677М. Передача состоит из гидротрансформатора А, корпус 3 которого через приводной вал соединяется с коленчатым валом двигателя и механической двухступенчатой коробкой передач Б с автоматическим управлением. Понижающая передача коробки имеет передаточное число 1,79, задний ход —1,71.

Рис. 14.24. Гидротрансформатор: а—схема работы; б—основные детали

Механическая двухступенчатая коробка передач. Коробка передач представляет собой зубчатый двухступенчатый редуктор с расположенным в нем ведущим, ведомым и промежуточным валами.

Ведущий вал установлен на двух шарикоподшипниках и проходит через опору, на которой установлено колесо-реактор с муфтой свободного хода. На шлицах переднего конца вала крепится турбинное колесо, приводящее вал во вращение. На заднем конце вала установлена шестерня привода промежуточного вала и расположен двойной фрикцион В типа многодискового сцепления с передними дисками и задними. Передние фрикционные диски служат для включения прямой, а задние — для включения понижающей передачи.

Промежуточный вал установлен на двух подшипниках качения. На нем жестко закреплены зубчатое колесо привода вала и ведущие колеса передачи переднего и заднего ходов. В зацеплении с последним находится шестерня.

Ведомый вал изготовлен за одно целое со ступицей муфты. На переднем конце вала установлены фрикционные диски. В средней части вала на подшипниках скольжения установлены ведомая шестерня передачи переднего хода и ведомая шестерня передачи заднего хода с зубчатыми полумуфтами.

При работе двигателя через гидротрансформатор (насосное и турбинное колеса, колесо-реактор) крутящий момент передается на вал коробки передач.

На понижающей передаче замкнуты передние диски двойного фрикциона, блокирующие шестерню 8 ведущего вала. Муфта свободного хода находится в крайнем левом положении и блокирует на ведомом валу шестерню. При этом крутящий момент от ведущего вала через передние диски фрикциона В, шестерню, зубчатые колеса, шестерню и муфту передается на ведомый вал коробки передач, а от него— к ведущим колесам автомобиля.

Рис. 14.25. Схема гидромеханической передачи автобуса ЛиАЗ-677М: А—гидротрансформатор; Б—коробка передач

На прямой передаче замкнуты задние диски двойного фрикциона В. При этом муфта находится в нейтральном положении. В этом случае в результате фрикционного сопряжения ведущий и ведомый валы жестко соединяются между собой, и крутящий момент передается без изменений.

При передаче заднего хода включаются передние диски двойного фрикциона, муфта переводится в крайне правое положение, блокируя шестерню заднего хода. При этом крутящий момент от ведущего вала через зубчатые колеса передается на промежуточный вал, а от него — через колесо, шестерни на ведомый вал, изменяя при этом при помощи шестерни его направление вращения.

В условиях эксплуатации могут возникать такие режимы работы гидромеханических передач, когда гидротрансформатор принудительно блокируется, т. е. его насосное и турбинное колеса жестко соединяются между собой в результате включения фрикциона, и он переходит на режим работы гидромуфты, при котором передаваемый момент не изменяется.

Гидромеханические передачи автомобилей БелАЗ-548, -7525, МАЗ-7310 оснащены четырехколесными гидротрансформаторами и трехступенчатыми коробками передач.

Гидромеханические передачи указанных автобусов и автомобилей оснащены электрогидравлической системой автоматического управления коробкой передач, которое осуществляется при помощи центробежного регулятора и гидравлического переключателя в зависимости от скорости движения и степени нажатия на педаль управления подачей топлива.

Рекламные предложения:

Читать далее: передача и дифференциал

Категория: — Техническое обслуживание автомобилей

→ Справочник → Статьи → Форум

Источник: http://stroy-technics.ru/article/gidromekhanicheskaya-peredacha-avtomobilya

Акп (автоматические коробки передач) с гидротрансформатором – основные средства

Что такое гидромеханическая передача

В. Орлов, инженер городского транспорта, г. Минск

Один из городских маршрутов автобусного транспорта белорусской столицы насчитывает 26 остановок в прямом направлении и 31 в обратном. Автобус на этом маршруте выполняет семь–восемь рейсов за смену. При этом водитель должен переключить рычаг коробки передач не менее 700 раз за рабочий день, и это при условии беспрепятственного движения между остановками. Многие так и говорят: «Приходится «работать» рычагом, как «ломом». Оправдана ли такая трудоемкость в XXI веке?

Напомним читателям, что 75 лет назад в МВТУ им. Баумана был изготовлен первый советский гидротрансформатор. Если в конструкцию автоматической коробки передач (АКП) входит гидротрансформатор, ее называют гидромеханической передачей (ГМП).

АКП заметно облегчает управление автобусом. Автобус с автоматической КП мягко начинает движение, при торможении и ускорении оборудованные ими пассажирские транспортные средства малошумны.

Гидродинамика помимо плавности торможения продляет срок службы тормозных накладок.

К проектированию отечественной ГМП (двухступенчатой механической коробки передач, объединенной с гидротрансформатором) в 1956 г. приступили специалисты НАМИ и Львовского автобусного завода (ЛАЗ). ЛАЗ освоил ее выпуск под обозначением ГМП-2, а широкое применение ГМП-2 началось в 1967 г.

– ею комплектовали автобус ЛиАЗ-677. Этот автобус изначально не был «новинкой» (наследник ЗИЛ-158), лет же через десять он устарел окончательно.

Одним из наиболее существенных и непреодолимых недостатков конструкции этого автобуса было переднее расположение двигателя, что делало такими тяжелыми условия труда водителя.

Странно, что ГМП-2 применяли только на ЛиАЗе, хотя первоначально ее в небольших количествах устанавливали на автобусы ЛАЗ-695(Ж). Вместе с тем эта передача стала прототипом зарубежной ГМП.

На ее основе специалисты НАМИ совместно с научно-исследовательским институтом автомобилей UVМV (Чехословакия) и заводом Praha разработали гидромеханическую передачу НАМИ-«Прага» 2М-70 (Б) для больших городских автобусов с дизельным двигателем и в 1967 г. начали ее выпуск. Редчайший случай в практике советского автостроения.

ЭТО ИНТЕРЕСНО:  Какой объем двигателя ваз 2105 ременной

Несмотря на простоту, конструктивная схема ГМП-2 отличалась целым рядом преимуществом перед зарубежными разработками. В частности, отмечали удачно спроектированный НАМИ гидротрансформатор.

ГМП-3

Шли годы. Промышленно развитые страны совершенствовали конструкцию автоматических коробок передач – важнейшего узла городских автобусов. Примеры автоматизации коробок передач городских автобусов большого класса отмечаются и в СССР.

Львовский завод разработал АКП следующего поколения – ГМП-3 («Львiв-3», ЛАЗ-192.17), но у водителей и слесарей она получила невысокую оценку: «ненадежная», «низкая ходимость», «в определенные моменты времени автобус содрогается» и т. д.

Окончательно довести ГМП-3, очевидно, помешала «перестройка» в стране.

ГМП-3 состояла из блокируемого гидротрансформатора, механической трехступенчатой четырехвальной коробки передач непланетарного типа, гидродинамического замедлителя, масляной системы, систем управления и охлаждения, оборудовалась электронной системой автоматического управления (ЭСАУ). ЛАЗ также выпускал ГМП-3 с механо-гидроэлектрической системой управления.

Моменты переключения в зависимости от скорости движения автобуса и положения педали акселератора определялись программой переключений, заложенной в ЭСАУ. На ГМП располагались исполнительные электромагниты I, II и III передач, заднего хода и блокировки. Гидротрансформатор автоматически блокировался при включении гидрозамедлителя. Гидромеханический замедлитель управлялся пневматическим краном.

Применение ЭСАУ способствовало снижению расхода топлива за счет выбора оптимальных скоростей в момент переключения передач для различных условий эксплуатации, увеличения плавности хода при переключении передач, увеличивало долговечность фрикционов ГМП и трансмиссии автобуса, повышало надежность и ремонтопригодность агрегата за счет возможности быстрой замены элементов управления.

Бесплодные усилия

В 1990-е годы украинский изготовитель ГМП стал самостоятельным предприятием – ОАО «Львовский завод гидромеханических передач».

У предприятия имелись планы завершения испытаний опытных образцов планетарной многоступенчатой ГМП и гидродинамического тормоза-замедлителя для транспортных средств с механическими коробками передач, расширения номенклатуры за счет освоения выпуска новых моделей ГМП для дорожно-строительной техники и автомотрис, но они не были реализованы. Сначала завод вернулся к мелкосерийному выпуску модели ГМП-2 (под обозначениями 21.17, 22.

17), несколько ее доработав для установки на городские и пригородные автобусы длиной 79 м (читай – ЛАЗ-695) как с дизельными, так и с карбюраторными двигателями. С середины 1980-х годов фактически произошел обвал промышленного производства в стране, а 25 октября 2006 г. на Львовском заводе гидропередач произошел пожар. Тем дело и закончилось.

Что же предпринимал НАМИ, разработавший ГМП первого поколения? Возможности воплощения своих теоретических наработок руководству института виделись в сотрудничестве в рамках Совета экономической взаимопомощи, объединявшего социалистические государства. Теперь консультативно-техническую помощь оказывал тот самый чехословацкий институт UVMV.

С ним и начались совместные разработки семейства 35-ступенчатых планетарных передач для городского автобусного транспорта. Затем НАМИ, подключив ВКЭИ (Всесоюзный конструкторско-экспериментальный институт по разработке автобусов и троллейбусов, г.

Львов), создал опытные образцы планетарной 4-ступенчатой передачи размерами 757х700х571 мм для больших городских автобусов, оборудованных дизельными двигателями мощностью до 200 кВт и встроенным гидрозамедлителем, расположенным на валу турбины ГДТ.

Наработки лаборатории гидропередач НАМИ вел в период развала Союза и соцлагеря. В качестве производителя гидропередачи НАМИ рассматривался Курганский завод колесных тягачей (КЗКТ). Завод, столкнувшийся с падением объемов выпуска основного производства, не только провел начальные работы по технологической подготовке производства данной ГМП, но и в 1993–1995 гг. изготовил их опытную партию (мод. 0017.0035). Правда, в этом случае «автобусная» специализация ГМП-НАМИ несколько размывалась.

По показателям создававшаяся НАМИ планетарная ГМП для городского автобуса соответствовала «автоматам», выпускаемым основными мировыми изготовителями. К тому же степень доработки ее конструкции была достаточно высокой. Так, имелась документация для изготовления третьей опытной серии. НАМИ кроме планетарной ГМП для городских автобусов проектировал гидропередачи для легковых автомобилей (в частности, планетарную «пятиступку» ГМП для ГАЗ-3105), автопогрузчиков.

Технические характеристики ГМП, разрабатывавшихся в СССР и странах СНГ
Разработчик ЛАЗ-НАМИ ЛАЗ ВНИИтрансмаш НАМИ
Марка ГМП-2 (мод.22.17) ГМП-3 (мод.192.17) ГМП-4В НАМИ
Максимальная передаваемая мощность, кВт 130 (150)* 144** 150220 235
Максимальный передаваемый крутящий момент, Н·м 470 (700800)* 687** 7001030 1400
Максимальная частота вращения, мин–1 3200 (2100)* 14001500** (до 2530) н. д. 2000
Число передач 2 3 4 4
Передаточные числа 1,79; 1,00; 1,72 2,43; 1,44; 0,98; 1,97 н. д. 2,92; 1,9; 1,37; 1,00; –4,26
Гидротрансформатор (ГДТ) 4-колесный одноступенчатый н. д. 4-колесный, совмещен с гидрозамедлителем 3-колесный одноступенчатый
Кmax 2,8 (до 3,6) 1,83,2*** 2,22,8
Система управления Рычажный контроллер 5-кнопочный контроллер н. д. Микропроцессорная ЭСАУ
Вместимость масляной системы, л 14 25 н. д. 25
Масса, кг 213 350 н. д. 320

Важным направлением работы специалистов института стало совершенствование конструкции гидротрансформаторов. Например, на смену лопастным колесам гидротрансформаторов, изготавливаемых методом литья под высоким давлением в пресс-формах с осевым разъемом, были разработаны штампованная и штамполитая насосная и турбинная их конструкция, осевые одноколесные реакторы.

Совершенствовались и электронные системы управления ГМП – направление, в котором мы отставали («электроника» ГМП-3 представляла собой датчики с диодами да микропереключатели с электромагнитами).

После завершения работ по разработке и организации производства семейства ступенчатых гидромеханических передач НАМИ, обеспечивающих работу двигателя городского автобуса большого класса при благоприятных частотах вращения коленчатого вала, намечалась разработка 5-ступенчатой ГМП для сочлененных автобусов с двигателями мощностью до 235 кВт.

И все же НАМИ не стал основным в СНГ отраслевым центром по созданию высококачественных гидромеханических передач для автобусов (автомобилей) различного класса. Доводка разрабатывавшейся им гидропередачи (для автотранспортных средств) пришлась на тяжелейший в российской истории период – 1990-е годы.

Многообещающим было подключение к разработке автобусного «автомата» ВНИИтрансмаша (Санкт-Петербург), однако изготовленные питерцами в 1995 г. образцы ГМП-4В остались только опытными.

Источник: https://os1.ru/article/6385-akp-avtomaticheskie-korobki-peredach-s-gidrotransformatorom-o-priemah-protiv-lomov

Гидромеханическая передача БЕЛАЗ 7540А

Что такое гидромеханическая передача
ГИДРОМЕХАНИЧЕСКАЯ ПЕРЕДАЧА.

На самосвалах установлена пятиступенчатая гидромеханическая передача, обеспечивающая получение пяти ступеней переднего хода и двух ступеней заднего хода.

Гидромеханическая передача служит для изменения тягового усилия на ведущих колесах самосвала в зависимости от дорожных условий, для облегчения управления транспортным средством и обеспечения безопасности движения, для движения задним ходом, отсоединения двигателя от трансмиссии при его пуске и работе двигателя при остановке самосвала, а также обеспечения работы гидросистем самосвала.Общий вид гидромеханической передачи показан на рис.1 и рис.2.

Рис.1. Гидромеханическая передача. Общий вид.

Рис.2. Гидромеханическая передача:

1 — масляный насос; 2 — нагнетательная труба; 3 — фланец нагнетательной трубы; 4 — трубка подвода смазки к согласующей передачи; 5, 25 — кронштейны; 6 — регулировочные прокладки; 7 — муфта; 8 — механизм управления тормозом-замедлителем; 9 — тормоз-замедлитель; 10 — маслопровод; 11 — фильтр тонкой очистки масла; 12 — трубка управления тормозом-замедлителем; 13 — маслопровод к теплообменнику гидромеханической передачи; 14 — электрогидравлический клапан включения блокировки гидротрансформатора; 15 — золотниковая коробка; 16 — корректирующий клапан; 17 — механизм привода управления тормозом-замедлителем; 18 — гидротрансформатор; 19 — грузовой болт; 20 — пробка наливного отверстия; 21 — согласующая передача; 22 — индукционный датчик частоты вращения ведомого вала; 23 — пробка контрольного отверстия; 24 — масломерное окно (закрыто крышкой); 26 — коробка передач; 27 — пробка сливного отверстия; 28 — труба управления подпорным клапаном; 29 — маслопровод от теплообменника двигателя; 30 — место установки гидравлического датчика, предотвращающего случайное переключение ступеней с изменением направления движения; 31 — место под датчик масла в гидролинии смазки.

Гидромеханическая передача представляет собой единый агрегат, состоящий из согласующей передачи, гидротрансформатора, четырехвальной коробки передач с фрикционными муфтами, гидродинамического тормоза-замедлителя и узлов гидравлической системы. Все агрегаты ее смонтированы в общем разъемном корпусе, состоящем из картеров (корпусов) этих агрегатов.

Для охлаждения масла гидромеханическая передача оборудована внешним контуром, состоящим из масляного радиатора или теплообменника и подводящего и отводящего трубопроводов.Управление гидромеханической передачей осуществляется пультом, с помощью которого выбирается режим работы.Переключение ступеней осуществляется блокировкой шестерен с валами многодисковыми фрикционными муфтами.

Гидромеханическая передача установлена на раме на опорах с резиновыми амортизаторами (рис.3). Положение ее относительно двигателя регулируется прокладками 4, 5.

Рис.3. Установка гидромеханической передачи:1 — кронштейн на раме (показан условно); 2 — амортизатор; 3 — штифт; 4, 5 — регулировочные прокладки; 6 — кронштейн; 7 — гидромеханическая передача; 8 — болт крепления амортизатора.

Гидравлическая система гидромеханической передачи выполняет следующие основные функции:- создание и поддержание необходимого давления рабочей жидкости в фрикционных муфтах коробки передач и фрикционной муфты блокировки гидротрансформатора;- обеспечение циркуляции рабочей жидкости через гидротрансформатор, гидродинамический тормоз-замедлитель (при его включении) и радиатор под определенным давлением для поддержания нормального теплового режима гидромеханической передачи;- обеспечение смазки дисков фрикционных муфт и подшипников шестерен, деталей согласующей передачи.- автоматическую блокировку и разблокировку гидротрансформатора.

Схема гидравлической системы показана на рис.4.

Рис.4. Схема гидравлической системы гидромеханической передачи:

1 — фильтр-маслозаборник; 2 — клапан аварийного давления масла в главной гидролинии; 3 — главная секция насоса; 4 — секция насоса гидротрансформатора; 5 — полнопоточный фильтр; 6 — подпорный клапан; 7 — радиатор (теплообменник); 8 — фильтр тонкой очистки масла; 9 — клапан аварийного давления масла в гидротрансформаторе; 10 — регулятор давления масла в гидротрансформаторе; 11 — клапан блокировки гидротрансформатора; 12 — реле времени; 13 — гидравлический датчик частоты вращения ведущего вала (трубка Пито); 14 — механизм управления тормозом-замедлителем; 15 (YA8) — электрогидравлический клапан привода управления механизмом тормоза-замедлителя; 16 — корректирующий клапан; 17 — регулятор давления масла в главной гидролинии; 18 — обратный клапан; 19 — механизм разблокировки гидротрансформатора; 20, 21, 22, 23 и 24 — золотники управления фрикционными муфтами соответственно первой и второй ступеней, заднего хода, третьей ступени и диапазонных фрикционов; 25 (YA5), 26 (YA4), 27 (YA7), 28 (YA3) и 29 (YA6) — электрогидравлические клапаны соответственно первой и второй ступеней, ступени заднего хода, третьей ступени и диапазонных фрикционов;F1 — фрикционная муфта первой ступени; F2 — фрикционная муфта второй ступени; F3 — фрикционная муфта третьей ступени; FR — фрикционная муфта ступеней заднего хода; FD1 — фрикционная муфта понижающего диапазона; FD2 — фрикционная муфта повышающего диапазона; LF — фрикционная муфта блокировки гидротрансформатора.

В гидравлической системе гидромеханической передачи две основные гидролинии — главная гидролиния и гидролиния питания гидротрансформатора, тормоза-замедлителя и смазки коробки передач и согласующей передачи.Гидравлическая система включает аппараты управления, аппараты регулирования и поддержания давления рабочей жидкости в заданных пределах, а также узлы фильтрации и охлаждения масла.Питание гидравлической системы обеспечивается шестеренным масляным насосом.

Обслуживание гидромеханической передачи.

Перед обслуживанием гидромеханическую передачу нужно тщательно вымыть.Операции технического обслуживания выполнять в условиях, исключающих попадание пыли и грязи на сопрягаемые поверхности узлов и механизмов гидромеханической передачи.

Обслуживание гидромеханической передачи включает:- проверку уровня масла;- замену фильтрующего элемента фильтра тонкой очистки;- промывание фильтрующего элемента масляных фильтров;- замену масла;- проверку и регулирование осевого зазора в конических подшипниках согласующей передачи.

Ежесменно перед выездом проверить уровень масла в гидромеханической передаче, осмотреть соединения всех маслопроводов. Появившиеся подтекания масла из гидромеханической передачи и теплообменника, а также из соединений трубопроводов необходимо устранить.

Проверка уровня масла. Прежде чем проверять уровень масла в гидромеханической передаче необходимо установить самосвал на ровной площадке, затормозить стояночной тормозной системой.При проверке уровня масла следует находиться вне габаритов самосвала.Последовательность выполнения операции:- повернуть крышку указателя и открыть смотровое стекло;- запустить двигатель и нагреть масло в гидромеханической передаче до плюс 40-50оС.

При частоте вращения двигателя 600 об/мин уровень масла должен быть посредине смотрового стекла.Если уровень масла больше нормального (масло полностью закрывает смотровое стекло) или меньше (смотровое стекло свободно от масла), то нужно остановить двигатель и слить или долить необходимое количество масла. Следует помнить, что 2 л масла изменяют уровень в картере приблизительно на 10 мм.

Если при проверке окажется, что уровень масла соответствует норме, то остановить двигатель и закрыть смотровое стекло крышкой.

Замена масла. Срок службы гидромеханической передачи в большой степени зависит от своевременной замены масла, а также от его качества. Чтобы гарантировать наилучшие условия работы гидромеханической передачи, следует применять только масла, указанные в карте смазочных работ. При смене марки масла промыть гидромеханическую передачу.

Замену масла необходимо производить после наработки 1500 часов при выполнении операций очередного ТО-2.

Замену масла выполнять в следующей последовательности:- перед заливкой масла тщательно очистить пробку от грязи;- залить в гидромеханическую передачу масло до средней линии на смотровом стекле;- проверить уровень масла как описано ранее, при необходимости долить масло.

Разборку и сборку гидромеханической передачи следует производить на специальном поворотном стенде, обеспечивающем установку картеров в удобное для разборки и сборки положение.При установке на валы коробки передач фрикционных муфт и втулок подвода смазки необходимо следить, чтобы отверстия в барабанах и втулках совпадали с отверстиями и пазами в валах.

Для проверки правильности сборки после установки валов в картер гидромеханической передачи следует проверять легкость их вращения, а также сообщаемость каналов подвода рабочей жидкости на включение ступеней и смазку дисков и подшипников путем подачи сжатого воздуха в соответствующие каналы.

При снятии и установке фрикционной муфты первой ступени и ведомого вала с шестерней понижающего диапазона датчики 5 и 8 частоты вращения соответственно ведущего и ведомого валов необходимо установить в положение II, как показано на рис.5. Для этой цели нужно вывернуть болт 1 (с противоположной стороны кронштейна 2) и повернуть рычаг 6 в положение, изображенное пунктирными линиями.

После установки фрикционной муфты и ведомого вала датчик возвратить в рабочее положение и закрепить рычаг 4 болтом 1.

Рис.5. Установка датчиков частоты вращения:а — датчика ведущего вала; b — датчика ведомого вала;1 — болт; 2 — кронштейн; 3 — крышка люка; 4 — рычаг кронштейна; 5 — датчик частоты вращения ведущего вала; 6 — рычаг датчика; 7, 9 — фиксатор датчика; 8 — датчик частоты вращения ведомого вала;I — датчики и рычаги в рабочем положении; II — датчики и рычаги в положении для снятия и установки фрикционной муфты и ведомого вала.

Цена Гидромеханическая передача БЕЛАЗ 7540А: по запросу

Схема подключения радиатора охлаждения масла на Гидромеханическую коробку передач У35.615-00.000 гидравлическая схема гмп 3плюс 1. принципиальная схема коробки у35,615 радиатор охлаждения гмп гмкп у35.615 схема подачи масла кран управления замедлителя движения белаз 7540.

принципиальная схема гидромеханической передачи белаз гмкп у35.615 какое масло залить гмкп схема поключения нагрев масла гидравлики на белазе. схема белаза фото гидромеханическая передача 75450-1700004 схема подсоединения проверить масло гмп 3 белаз gmp belaz-7540.

куплю гидротрансформатор ГМП Белаз 7547

Источник: https://expodizel.ru/samosval/7540a/10/2_1_9_r.htm

Почему Komatsu использует в линейке два вида трансмиссии: гидростатическую и гидромеханическую

Какой должна быть трансмиссия бульдозеров: гидростатической или гидромеханической? Какая из них удобнее в работе, для каких целей? Это один из давних споров между пользователями и даже между производителями техники. Komatsu решила этот спор, использовав в линейке бульдозеров оба варианта, но в технике разного назначения. И вот почему.

ЭТО ИНТЕРЕСНО:  Какой двигатель стоит на ваз 21093

Для начала сравним, как работают обе системы.

Гидромеханическая трансмиссия — это гидротрансформатор плюс обычная шестеренчатая коробка передач. Автоматическая, как на бульдозерах Komatsu 16-й серии, или с переключением в ручном режиме, как на бульдозерах 12-й серии. Ключевой элемент — гидротрансформатор, который преобразует и увеличивает тягу относительно тяги, которую выдает двигатель.

Например, если двигатель выдает 100 Н·м, то на выходе из турбинного колеса получаем тягу до 240 Н·м. Это огромный плюс гидромеханики, но в этом и ее проблема. Такой режим трансформации достигается только при высокой степени пробуксовки гидротрансформатора, когда турбинное колесо стоит, а насосное очень быстро крутится.

При этом возникают внутренние потери на трение жидкости внутри гидротрансформатора, резко снижается КПД. Зато тяга максимальна.

В гидростатике два ключевых элемента: насос, который преобразует энергию двигателя в движение жидкости, и гидромотор, который приводит в движение гусеницы. Гидротрансформатора нет, то есть тяга меньше, зато выше КПД.

Из этого следует разница в назначении машин с этими типами трансмиссии.

Бульдозеры с гидромеханикой — это инструмент для тяжелых работ, где требуется высокая тяга. В первую очередь это горная промышленность, работа в карьерах. Максимальная тяга часто полезна и для тяжелых строительных работ, например при подготовке площадок для кустовых месторождений, то есть при работе на мерзлом грунте. Это бульдозеры Komatsu D65EX-16, D155A-5, D275A-5, D375A-6.

Тяжелый бульдозер Komatsu D375A-6 трудится на известняковом карьере в Дании

Ниша бульдозеров на гидростатике — дорожные и коммунальные работы. Специфика задач в этих видах деятельности требует максимальной маневренности и экономичности техники. При постоянных передвижениях с относительно малой нагрузкой себестоимость работы техники на гидростатической трансмиссии будет ниже, например из-за меньшего расхода топлива. Поэтому модели Komatsu для строительства дорог и городских работ оснащены насосами и гидромоторами. Это D39EX/PX-22 и D37EX/PX-22.

Но есть модель, техническое решение которой вызывает самые бурные обсуждения как минимум потому, что это самая распространенная, популярная модель в линейке бульдозеров Komatsu. Это D65-16 в спецификациях EX/PX/WX.

Двадцатитонный D65 — универсал. Он популярен у строителей в нефтегазовой сфере, его можно встретить на песчаных, щебеночных и угольных карьерах, его используют в дорожном строительстве и даже порой на крупных городских проектах. Причем часто, если у компании — владельца техники есть сразу несколько проектов, бульдозер переводят с одной задачи на другую и он продолжает эффективно трудиться. Например, из карьера — на строительство дороги. И в D65 стоит гидромеханическая коробка передач.

Часть стандартных работ, где обычно задействован «шестьдесят пятый», — это именно те работы, про которые выше говорилось, что на них чаще используют технику с гидростатикой. Вот, например, видео, где на дорожных работах бок о бок трудятся Komatsu D65EX-12 с гидромеханической коробкой передач и машина примерно этого же класса от другого производителя (на гидростатике).

Бульдозер Komatsu D65EX-12 на дорожных работах рядом с машиной на гидростатике

Давайте обозначим критерии, по которым можно сравнить эффективность эксплуатации на схожих задачах машин с разными типами трансмиссии:

  • производительность
  • экономичность в работе
  • надежность
  • ремонтопригодность
  • затраты на эксплуатацию

Производительность бульдозеров

На вскрыше скальной породы гидромеханика однозначно полезнее гидростатики. На задачах, где не требуется максимальное тяговое усилие, у гидростата с замкнутым контуром значительно выше КПД за счет меньших потерь энергии. Эксплуатанты отмечают и большую управляемость: бульдозер может поворачивать во время перемещения грунта. Но это могут делать и бульдозеры на гидромеханике с гидросистемой поворота HSS, например D65EX-16.

Экономичность

При цикличных перемещениях с коротким плечом гидростатика выигрывает. 

При постоянном движении с определенной скоростью гидромеханика оказывается экономичнее.

Ресурс трансмиссии и общая надежность техники

Гидростатическая трансмиссия — более сложная система. Если просто сравнить ресурс насоса и гидротрансформатора,- последний оказывается более надежным. Но все зависит от производителя, оператора и механиков. Качественный гидронасос при грамотной эксплуатации и профессиональном сервисе полностью отрабатывает свой ресурс, как и гидротрансформатор.

Но в сложных условиях бульдозер на гидромеханике будет трудиться без помех, тогда как к гидростату придется относиться с большой осторожностью или вовсе нельзя будет работать на технике с ним.

Например, если речь о работе на горячем шлаке, то ходовой мотор может просто загореться вместе со всеми горючими жидкостями, которые он прокачивает.

А в эксплуатации при низких температурах гидромеханике нужно меньше времени для подготовки к работе, нет нужды трепетно соблюдать ритуал прогрева, ей не так страшны частые остановки двигателя на час-другой.

Гидросистема ходовой части очень требовательна к использованию низкотемпературных гидравлических жидкостей, и ее обязательно нужно прогреть перед движением. Если в сильный мороз это не сделать, а завести и сразу тронуть бульдозер с места, можно повредить сальники на валах насоса и мотора, гидрошланги и т. д.

Ремонтопригодность

Компоненты гидростата легче и быстрее заменяются хотя бы потому, что они меньшего размера, чем компоненты на механике. Если запчасти под рукой, склад близко или вообще на участке (на крупных проектах с сервисной поддержкой от дистрибьютора), то в среднем ремонт занимает одну смену. Из этого времени сама работа с гидронасосом или гидромотором — это 2–3 часа. С гидромеханикой процесс замены компонентов ощутимо тяжелее и дольше.

Затраты на эксплуатацию (включая ТОиР)

Гидротрансформатор и его КПП до ремонта служат дольше, чем гидромотор с гидронасосом. Хотя бы потому, что они менее требовательны к правильной эксплуатации, более неприхотливы. Ресурс компонентов у гидростата меньше, покупать и менять компоненты нужно несколько чаще. Так что, если сравнивать расходы за один и тот же промежуток времени, получается паритет между двумя системами.

Гидростатика vs гидромеханика: финальный подсчет

Сравнение трансмиссий Гидромеханика Гидростатика Производительность Максимальное тяговое усилие, низкий КПД Большая управляемость, маневренность, высокий КПД Экономичность Большее потребление топлива Меньшее потребление топлива Ресурс и общая надежность Более простая система, ресурс больше, неприхотлива в эксплуатации Более сложная система, ресурс меньше, требовательна к эксплуатации и сервису, особенно при низких температурах Ремонтопригодность Компоненты тяжелее, их физически сложнее и дольше заменять, ремонт и замена длятся дольше Компоненты легче, их быстрее заменять, ремонт и замена длятся меньше Затраты на эксплуатацию Служит дольше Служит меньше

Резюмируем: в стоимости обслуживания и ремонта, в сложности этих процедур у гидростатики и гидромеханики примерный паритет, достоинства и недостатки обоих систем уравновешивают друг друга, если сравнивать эксплуатацию за более-менее продолжительный срок. Ключевая разница — в применении бульдозеров с этими системами: экономичность и высокий КПД против максимальной тяги и неприхотливости. Соответственно, выбор техники с тем или иным типом передачи крутящего момента двигателя зависит от задач владельца. Для тяжелых условий, для максимальных показателей по производительности и экономичности — однозначно, гидромеханика. Для более щадящей работы — гидростатика.

Это касается и «пограничного» случая с D65: если у компании задачи связаны в основном с городским и дорожным строительством, есть смысл выбрать более легкие модели D39 или D37 с гидростатической трансмиссией. Тем, кто работает на месторождениях, на Севере, прокладывает нефте- и газопроводы, для работы в карьерах может быть удобнее более неприхотливый и мощный D65. Также D65 с его гидромеханикой предпочтительнее для проектов, где много работы для рыхлителя.

Тем, кто совмещает разные типы работ, также есть смысл использовать технику на гидромеханике: она может оказаться менее экономичной на легких задачах, но вытянет там, где не справится бульдозер на гидростате.

Источник: https://www.komek.ru/staty/pochemu-komatsu-ispolzuet-v-lineyke-dva-vida-transmissii-gidrostaticheskuyu-i-gidromekhanicheskuyu/

Устройство автомобилей



Гидромеханическая передача является комбинированной, в которой наряду с гидротрансформатором применяется ступенчатая коробка передач. Обычно такую коробку передач сокращенно называют ГМП или ГМКП.

Гидротрансформатор, как и гидромуфта был изобретен немецким профессором Германом Феттингером в начале прошлого века. Прежде чем найти применение на автомобилях, эти гидродинамические передачи использовались в судостроении.

На автомобилях ГМП впервые появилась в США — в 1940 г. коробка Hydramatic была установлена на автомобилях Oldsmobile.

В настоящее время в США гиромеханическими коробками передач оснащаются почти 90 % легковых автомобилей, а также все городские автобусы и значительная часть грузовых автомобилей.

В Европе массовое применение гидромеханических коробок передач началось только в начале семидесятых годов прошлого века, когда эти передачи нашли применение в автомобилях Mercedes-Benz, Opel, BMW.

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро¬трансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханическая передача является бесступенчатой и позволяет получить любое передаточное число в заданном диапазоне.

В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и вальные ступенчатые коробки передач с автоматическим управлением.

Устройство и работа гидротрансформатора, а также его отличие от гидромуфты подробнее рассмотрено здесь.

В некоторых случаях гидротрансформатор устанавливается дополнительно к стандартному фрикционному сцеплению и ступенчатой коробке передач, при этом переключение передач происходит ручным способом.

В такой конструкции достаточно однодискового сцепления, так как оно служит только для отключения первичного вала коробки передач от турбинного колеса трансформатора при переключении передач, а плавность увеличения крутящего момента обеспечивает гидротрансформатор. Достоинством такой передачи является относительная простота конструкции и управления по сравнению с автоматизированной передачей.

Однако наиболее часто гидротрансформатор используется в сочетании двух- или трехступенчатой коробкой передач без стандартного фрикционного сцепления.

Коробки передач выполняются вальными или чаще планетарными. Управление переключением передач автоматическое или полуавтоматическое.

***

Двухступенчатая вальная коробка передач

Гидротрансформатор в сочетании с двухступенчатой вальной коробкой передач применяется в гидромеханической передаче автобуса ЛиАЗ-677М (рис. 1).

Она представляет собой редуктор с расположенными внутри него валами: первичным 3, вторичным 11 и промежуточным 15. Первичный вал связан с турбиной гидротрансформатора, а вторичный вал – с карданной передачей трансмиссии.

Первая (понижающая) передача имеет передаточное число 1,79, а вторая передача – прямая, т. е. ее передаточное число равно единице.

Особенностью такой коробки передач является то, что для включения передач наряду с зубчатой муфтой используются многодисковые муфты (фрикционы), работающие в масле.
Ведущие диски фрикционов – стальные, а ведомые – металлокерамические.

Они устанавливаются на внутренних или наружных шлицах и имеют возможность незначительного перемещения в осевом направлении.

В разъединенном положении пакет дисков удерживают пружины, сжимание дисков происходит от воздействия масла, подаваемого в цилиндр включения фрикциона.

При включении первой передачи срабатывает фрикцион 5, который блокирует зубчатое колесо 4 с первичным валом 3. Муфта 8 при этом смещается влево и блокирует зубчатое колесо 7 с вторичным валом 11.

Крутящий момент передается через зубчатое колесо 4 первичного вала, зубчатые колеса 16 и 14 промежуточного вала и зубчатое колесо 7 на вторичный вал 11.

При включении второй передачи срабатывает фрикцион 6, который блокирует первичный вал 3 с вторичным валом 11. Муфта 8 устанавливается в нейтральное положение.

Для движения задним ходом муфта 8 перемещается в правое положение и блокирует зубчатое колесо 10 с вторичным валом 11, затем включается фрикцион 5. Крутящий момент передается через зубчатые колеса 4, 16, 13, 12, 10 на вторичный вал 11 коробки передач.

При включении фрикциона 2 происходит блокировка гидротрансформатора, когда турбинное и насосное колеса жестко соединяются друг с другом, и он переходит в режим гидромуфты.

***



В гидромеханических передачах наибольшее применение нашли планетарные коробки передач. Они обладают компактностью, пониженным уровнем шума при работе и длительным сроком службы. Переключение передач в них происходит практически без разрыва потока мощности.

Основным звеном планетарной коробки передач является планетарный ряд (рис. 2), состоящий из эпициклического (коронного) зубчатого колеса 1, солнечного зубчатого колеса 2, водила 3 и сателлитов 4.
Оси сателлитов установлены на водиле и вращаются вместе с ним, т. е. они подвижны. В зависимости от того, какой элемент планетарного ряда является ведущим, а какой заторможен, происходит изменение передаточных чисел планетарного ряда.

Двухступенчатые коробки передач имеют один планетарный ряд. Многоступенчатые могут иметь два и более планетарных рядов, которые связаны друг с другом.
Торможение элементов планетарных рядов при переключении передач производится фрикционными муфтами (фрикционами) или ленточными тормозными механизмами.

Конструкция гидромеханической передачи легкового автомобиля, в которой гидротрансформатор сочетается с трехступенчатой планетарной коробкой передач представлена на рис. 3.

Гидротрансформатор 1 состоит из трех колес с лопастями. Вал 2 турбинного колеса является ведущим валом коробки передач. Ведомый вал 12 коробки передач расположен соосно с ведущим валом. Коробка передач включает два одинаковых планетарных ряда 7 и 8, три многодисковых фрикциона 5, 6, 9 и два ленточных тормозных механизма 4, 10.

Переключение передач осуществляется включением фрикционов и тормозных механизмов в различных комбинациях (рис. 4).
В нейтральном положении включен тормозной механизм 10 (рис. 3) и сблокирована муфта 13 свободного хода. Ведомый вал 12 не вращается.

На первой передаче включены фрикцион 6 и тормозной механизм 10, а также включена муфта 13 свободного хода. Эпициклическое зубчатое колесо планетарного ряда 8 вращается с угловой скоростью ведущего вала 2, а солнечное зубчатое колесо заторможено, водило вращает эпициклическое зубчатое колесо планетарного ряда 7, в котором солнечное зубчатое колесо также заторможено. Ведомым является водило этого ряда, выполненное заодно с ведомым валом 12. Муфта свободного хода 13 включена.

На второй передаче включены фрикцион 5 и тормозной механизм 10. Эпициклическое зубчатое колесо планетарного ряда 8 вращается свободно, а планетарного ряда 7 – с угловой скоростью ведущего вала 2.
Так как солнечное зубчатое колесо заторможено, то вращается водило и ведомый вал 12. Муфта свободного хода 13 включена.

На третьей передаче включены фрикционы 5 и 6, а также тормозной механизм 10. Эпициклическое зубчатое колесо и водило планетарного ряда 8 ведущие. С такой же угловой скоростью вращаются эпициклические зубчатые колеса и водило планетарного ряда 7, т. е. ведущий и ведомый валы вращаются с одинаковой частотой.

На передаче заднего хода включен фрикцион 6 и тормозной механизм 4. Водило планетарного ряда 8 заторможено, а эпициклическое зубчатое колесо ведущее.
Солнечное зубчатое колесо вращается в обратном направлении, в этом же направлении вращается солнечное зубчатое колесо планетарного ряда 7. Так как эпициклическое зубчатое колесо планетарного ряда 7 заторможено, ведомым является водило, связанное с ведомым валом 12.
Муфта свободного хода 13 заблокирована.

***

Управление гидромеханической коробкой передач



Дистанционное образование

  • Группа ТО-81
  • Группа М-81
  • Группа ТО-71

Олимпиады и тесты

Источник: http://k-a-t.ru/mdk.01.01_transmjssia/kpp_8_hidro/index.shtml

Статьи

Славу «народного» во всех смыслах автомобиля так просто не заслужить. Потребуются долгие годы изнурительной эксплуатации, длинные речи скептиков и хвалебные оды счастливых владельцев. Но где их взять, когда жизнь новой модели на конвейере сегодня коротка, как полет бабочки-шелкопряда. Это раньше машины строили с колоссальным запасом прочности, сегодня — на 18 месяцев вперед до ближайшей премьеры. Ничего личного, просто маркетинг.

ЭТО ИНТЕРЕСНО:  Сколько метров тормозной путь автомобиля

17 февраля 2016 | Тест-драйвы

Поло седан. Плати мало — получай максимум

Это было недавно, это было давно. С тех пор, как доступный седан VW Polo появился на белорусском рынке, прошло уже 6 лет. Бюджетная альтернатива когда-то безальтернативному Logan. Вряд ли кто-то будет оспаривать популярность Polo на белорусском рынке.

14 января 2016 | Тест-драйвы

Skoda Rapid с новым 1.6 MPI. То, что кризис прописал

Кризис наступает. Американский доллар в обменниках робко подбирается к отметке в 20 тысяч белорусских рублей, цены на нефть стремительно падают на фоне обвала китайской биржи и тащат за собой в пучину неизвестности аналитиков, банкиров и журналистов. Но не простых граждан. Белорусы, со свойственным нам спокойствием, отправляются на работу и умудряются ежемесячно откладывать в кубышку с рублевой зарплаты, при этом не теряя и интерес к новым бюджетным автомобилям.

9 января 2016 | 1000 советов

Зимние «забавы». Как разбудить дизель от зимней спячки?

Удивление приходит во время зимы. Особенно для дизелистов. В этом году сильных морозов как-то и не ждали. А между тем с 1 января за окном устойчивый минус. Да еще какой! На прошлой неделе ночью местами по стране столбик термометра опустился до -25 градусов мороза.

23 ноября 2015 | Тест-драйвы

Lifan 820 и Sоlano 620EV. Меж бензиновым настоящим и электрическим будущим

На Lifan верят в светлое электрическое будущее автомобилей, и поэтому уже сейчас активно работают в этой области. Lifan принадлежит несколько патентов, связанных с производством электродвигателей и блоков управления к ним, а также производством электрических батарей. Но и актуальность рынка сегодняшнего дня тоже никуда не исчезла. Так что этот тест-драйв мы начнем с бензинового настоящего, а закончим электрическим будущим.

30 октября 2015 | Тест-драйвы

Lifan X80. Совершенно секретно (видео)

На сегодняшний день линейка кроссоверов Lifan состоит из двух моделей – X50 и X60. Оба переднеприводные, причем X50 к кроссоверам можно отнести весьма условно, потому что по сути это банальный пятидверный хэтчбек с пластиковым обвесом по периметру кузова. Но уже совсем скоро линейка Lifan пополнится самым настоящим, полноценным кроссовером, который получил индекс X80.

24 октября 2015 | Тест-драйвы

Партизан-Драйв. Тихая охота на Skoda Yeti

После пыльных будней большого города люди с длинными вереницами машин тянутся на природу. Бегут из каменных джунглей навстречу чистому воздуху лесов и хрустальной глади рек и озер. В лесу пахнет сыростью и грибницей. Листья пружинят под ногами, с сухим треском ломаются ветки, резким звуком нарушая торжественную тишину осеннего леса.

22 октября 2015 | Путешествия

Азиатский прогресс. Как собираются автомобили Lifan в Китае

С десяток лет назад китайские автомобили мало чем отличались от дешевых китайских же товаров массового спроса вроде игрушек, одежды, обуви. То есть были дешевыми и весьма сомнительного качества. Но уж в чем китайцам не откажешь, так это в трудолюбии и стремлении делать что-то все лучше и лучше.

28 сентября 2015 | Тест-драйвы

Алтайский Драйв. Берем высоту и штурмуем горные реки на Lifan X50

Первая ночь в горах Алтая прошла мгновенно. Устав от длительного перелета и насыщенной дневной программы, журналисты спешили забыться спасительным сном. И тут многих ждал подвох: разница в часах составляет + 3 часа по сравнению с Минском, организм не успел быстро адаптироваться, поэтому я, например, проснулся в 5 утра.

18 сентября 2015 | Тест-драйвы

Новая Audi TT: автомобиль будущего или старая пьеса в новом переплете?

Если чего-то очень сильно захотеть, то оно обязательно сбудется. А захотелось нам сравнить Audi TT первого поколения с новинкой. Легко! Хозяин праотца спортивного купе был найден в считанные минуты и даже загорелся желанием показать свой автомобиль. Сергей Вардомацкий и его 14-летний ТТ – гости нашего свежего тест-драйва. Поехали!

16 сентября 2015 | Путешествия

Тайны Шамана. Проверяем на прочность Lifan X50 в горах Алтая

Когда у белорусов заканчиваются деньги, они отправляются в обменники. Никаких Вам танцев с бубном и прочего шаманства. Факт давно общепринятый и известный. У нас, в Беларуси. А вот у моих российских коллег он вызывает легкую улыбку и сожаление.

«Ты не горюй, чуть-что поможем, младший брат,» — дружественными хлопками по плечу подбадривают журналисты в зале ожидания аэропорта Внуково. На часах полночь и мы вот-вот готовы вылететь в Горно-Алтайск в гости к сибирским шаманам, чтобы увидеть и понять новый Lifan X50.

Автомобиль, который готов стать бестселлером в Беларуси.

31 августа 2015 | Тест-драйвы

Обновленный Kia Rio. Хороший способ вписаться в бюджет

При обновлении моделей в бюджетном сегменте традиционно не принято разбрасываться этим самым бюджетом. Нужно сохранить цену на прежнем уровне и при этом привлечь внимание как старых, так и новых покупателей. Непростая задача для всех, кто работает над созданием автомобиля.

6 августа 2015 | Тест-драйвы

Максимум функционала за минимум средств

Полку бюджетных кроссоверов прибыло. До недавних пор сомнительную честь китайских производителей отстаивал почти белорусский Geely Emgrand X7, а конкуренцию ему составляли Chevy Niva и белорусский бестселлер Renault Duster.

6 июля 2015 | Тест-драйвы

Mercedes-Benz C180 (W205): мужской и женский взгляд на машину (видео)

В свежем выпуске тест-драйва Автомалиновка отправилась знакомиться с новым Mercedes C180. На этот раз автомобиль окружили особым вниманием. Я решила передать главную партию постановки гостю выпуска – ценителю хороших машин, белорусскому итальянцу, который уже более пяти лет живет в Болонье – Вадиму Усовичу. Сама же сыграла роль персонального водителя. Обо всем по порядку.

sh: 1: —format=html: not found

Источник: https://av.by/article/index.php?event=Viewamp;articles_id=279

Гидромеханическая коробка передач. Устройство

Гидромеханическая коробка передач ⭐ состоит из:

  • гидротрансформатора;
  • механической коробки передач.

На легковых автомобилях наибольшее распространение получили гидромеханические коробки с планетарными механическими коробками. Их преимущества:

  • компактность конструкции;
  • меньшая металлоемкость и шумность;
  • больший срок службы.

К недостаткам относятся:

  • сложность;
  • высокая стоимость;
  • пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидротрансформатор

Гидротрансформатор представляет собой гидравли­ческий механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками:

  • насосного (ведущего);
  • турбинного (ведомого);
  • реактора.

Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены тур­бинное колесо 2, соединенное с первичным валом 5 коробки передач  и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рис. Гидротрансформатор:
а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеснению жидкости препятствуют специальные уплотнения.

При работающем двигателе насосное, колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение.

Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента.

Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места, при этом коэффициент трансформации может составлять до 2,4. В этом случае реактор неподвижен  так как заторможен муфтой свободного хода.

По мере разгона автомобиля увеличивается скорость вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты.

Таким образом, происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и к ведущими колесами автомобиля, Это обеспечивается следующим  образом: с уменьшением скорости вращения ведущих колес автомобиля при возрастании сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине, следовательно, на ведущих колесах автомобиля.

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД  до 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную планетарную коробку передач, которая компенсирует указанные недостатки.

Планетарная коробка передач

Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся и зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рис. Планетарный механизм:
1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7 или многодискового «мокрого» сцепления.

В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5.

При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

В автоматических коробках передач применяются фрикционные муфты сцепления. Фрикционная муфта сцепления со­стоит комплекта покрытых слоем фрикционного материала дисков, прижатых друг к другу через прокладки в виде тонких пластин из гладкого металла.

Рис. Фрикционная муфта сцепления автоматической коробки передач:
1 – канал подачи рабочей жидкости; 2 – поршень; 3 – кожух муфты; а – выключенное состояние; б – включенное состояние

При этом часть фрикционных дисков оснащены внутренними шлицами, часть – наружными. Прижимание дисков друг к другу обеспечивается гидравлическим поршнем 2, для выключения сцепления применяется возвратная пружина.

При подаче к поршню давления рабочей жидкости диски плотно прижимаются друг к другу, образуя одно целое. Как только давление снимается, возвратная пружина отводит поршень назад и диски выводятся из зацепления.

В качестве возвратных пружин могут использоваться винтовые, диафрагменные и гофрированные дисковые пружины.

Двухступенчатая гидромеханическая коробка передач

В качестве примера гидромеханических передач рассмотрим двухступенчатую гидромеханическую коробку передач.

Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управлениях кнопочным переключением передач.

Кнопки соответственно означают нейтральное положение, задний ход, первую передачу и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рис. Гидромеханическая коробка передач:
1 – гидротрансформатор; 2,4 – тормозные механизмы; 3 – фрикцион; 5,6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной первой передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на вторую передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движения автомобиля задним ходом включается только тормозной механизм 4.

В настоящее время автоматические коробки передач имеют электронное управление, что позво­ляет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 68 %).

Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения.

Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Система автоматического управления обычно состоит из следующих подсистем:

  • функционирования (гидравлические насосы, регуляторы давления)
  • измерительная, собирающая информацию о параметрах управления
  • управляющая, вырабатывающая управляющие сигналы
  • исполнительная, осуществляющая управление переключением передач, работой двигателя
  • подсистема ручного управления
  • подсистема автоматических защит, предотвращающая возникновение опасных ситуаций

Основными элементами электронной системы управления являются электронный блок и рычаг управления.

Акп с электронным управлением

В качестве примера современной Акп с электронным управлением рассмотрим шестиступенчатую коробку передач 09G  японского концерна AISIN.

АКП состоит из гидротрансформатора, механической планетарной коробки передач с многодисковыми фрикционами и многодисковыми тормозными механизмами, гидравлической системы, систем охлаждения и смазки, электрической системы.

Рис. Разрез автоматической шестиступенчатой коробки передач 09G:
К– многодисковые муфты; В – многодисковые тормоза; S – солнечные шестерни; Р – сателлиты; РТ – водило; F – обгонная муфта; 1 – вал турбинного колеса; 2 – ведомая шестерня промежуточной передачи; 3 – жидкостный насос

Планетарные ряды объединены по схеме, разработанной Лепеллетье (Lepelletier). Крутящий момент двигателя подводится к одинарному планетарному ряду. Далее он направляется на сдвоенный планетарный ряд Равиньо (Ravigneaux).

Рис. Двухредукторная планетарная система Лепеллетье:
а – обычный планетарный редуктор; б – планетарный редуктор  Равиньо; 1 – вал турбинного колеса; Р1 – сателлит коронной шестерни Н1; Р2 – сателлит солнечной шестерни 2; Р3 – сателлит коронной шестерни 1; S1 ­­– солнечная шестерня 1; S2 — солнечная шестерня  2; S3 — солнечная шестерня 3; Н1 – коронная шестерня 1; Н2 – коронная шестерня 2

Управление одинарным планетарным рядом производится посредством многодисковых муфт K1 и K3 и многодискового тормоза B1. Число сателлитов в планетарных рядах выбирается в зависимости от передаваемого крутящего момента.

Сдвоенный планетарный ряд управляется посредством многодисковой муфты K2, многодискового тормоза B2 и обгонной муфты F. В системе управления муфтами предусмотрены устройства динамической компенсации рабочего давления, которые делают работу муфт независящей от частоты вращения. Муфты K1, K2 и K3 служат для подвода крутящего момента к планетарным рядам, а с помощью тормозов B1 и B2, а также обгонной муфты обеспечивается передача реактивных моментов на картер коробки передач.

Давление в рабочих цилиндрах муфт и тормозов изменяется посредством регулирующих клапанов.

Обгонная муфта F представляет собою механизм, который работает параллельно с тормозом.

Источник: https://ustroistvo-avtomobilya.ru/avtomaticheskie-korobki-peredach/gidromehanicheskaya-korobka-peredach/

Понравилась статья? Поделиться с друзьями:
АвтоРем
Как работает турбина в бензиновом двигателе

Закрыть